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2 Research objectives

The aim of this research visit is the study of objects in Galois geometries that are closely related
on the one hand to Latin squares and on the other hand to optimal linear codes.

Latin squares

A Latin square of order g ansx sarray with entries in the s&= {1,2,...s} such that each
row and each column contains each elemer8 efactly once. Two Latin squarés= (l;j) and

M = (m) of orders are calledorthogonalif the set{(lij,mj) : 1 <i,j < s} equals the se¥’.

A set oft mutually orthogonal Latin squares of ordeis denoted by MOLS(s). It is called
maximalif there exists no Latin square of ordethat is orthogonal to all its elements, in which
case it is denoted lyMAXMOLS (s).

Latin squares have many applications, for example in the design of statistical experiments, in
the organisation of tournaments and in the domain of massive parallel computing. The problem
of determining the numbeitsands for whicht MOLS(s) exist is an old one, originating by
Euler [11]in 1782.

Optimal linear codes

In many cases it is inevitable that errors occur during the transmission of data or that stored data
is corrupted. In the former case think of atmospheric disturbances that distort data transmitted
by a satellite; in the latter case of scratches on a Compact Disc. By adding a certain amount of
redundant information to the transmitted or stored data, the theory of error-correcting codes can
overcome the possibly disastrous effects of such inevitable errors by allowing to retrieve correct
information form corrupted data.

For practical purposes, there is great interest in linear codebneAr [n, k, d;q]-codeis
a k-dimensional vector space W(n,q), the n-dimensional vector space over the finite field
of orderq, with minimum Hamming distancd. The parameters of the code are thegth n
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(which determines the size of one codeword, i.e., the amount of data needed to encode one piece
of information), thedimension dwhich determines the number of codewords, i.e., the number

of different messages that can be encoded) andithenum distance @which determines the
number of errors the receiver of a message can detect and correct). Hence one is interested in
codes with small length, large dimension and large minimum distance. However, these different
requirements contradict one another: there exist theoretical limits on the size of one of these
parameters in function of the other two. Codes that attain one of these limits areagztitedl

Here we mention two of these bounds. Taeesmer bound14] states that am, k,d; g]-code
satisfiean > z!‘:‘(} [d/qg'], while theSingleton bound19] for linear codes gives the restriction

d <n—k+1. A code attaining the former bound is calledale attaining the Griesmer bound

one attaining the latter bound is called DS code

Latin squares and partial spreads

One way to construct sets of mutually orthogonal Latin squares is tgdingnets, since it is
well-known that a set af — 2 MOLS(s) yields an(s,r)-net and vice versa. Itis here that partial
spread$ come into play, for from a partial spread ér)-net can be obtained. If one wants to
construct maximal sets of MOLS from partial spreads, then the partial spread must be maximal,
but this necessary condition is not sufficient. In addition, the net that originates from the partial
spread must also be maximal. It is this part of the construction, showing that the associated net
is maximal, that is often the most difficult. Still, in several instances, see e.g. [1] and [12], this
obstacle was overcome to show that certain maximal partial spreads yield sets of MAXMOLS.

Optimal codes, arcs and blocking sets

To clarify the relation between optimal linear codes and certain sets of points in finite projective
spaces, we mention the following two equivalerices

e there is a one-one correspondence between certain types of multiple blocking sets in
PG(n,q), so-called{f,m;n,q}-minihypers wheref andm satisfy well-defined condi-
tions, and linear codes meeting the Griesmer bound,;

¢ the study of MDS codes is equivalent to the study of arcs in finite projective spaces.

3 Results obtained during the visit
We will use the following notations and definitions.

e GF(q) denotes the finite field of order. Henceq = p" for some primep and some
positive integeh.

For the definition of s, r)-nets, see Subsection 3.4.
2For the definition of partial spreads, see the beginning of Section 3.
3For the definitions of multiple blocking sets, minihypers and arcs, see the beginning of Section 3.
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AG(n,q) denotes tha-dimensional affine space over Gf}.

PG(n,q) denotes th@-dimensional projective space over G-

A t-spacein PG(n, q) is at-dimensional subspace of P&q).

A point (respectivelyline, plane solid, hyperplang in PG(n,q) is at-space wheré=0
(respectivelt =1,t =2,t =3,t =n—1).

A k-fold blocking set with respect to t-space®i8(n, q) is a set of points in P, q) that
intersects evertrspace of P@, q) in at leask points.

An {f,m;n,q}-minihyperis anm-fold blocking set with respect to hyperplanes in(R)
that is not anm+ 1)-fold blocking set with respect to hyperplanes in(R).

A k-arcin PG(n,q) is a set ok points such that no hyperplane contains 1 of them.

A partial t-spreadin PG(n,q) is a set of mutually disjoirt-spaces in PG, Q).

3.1 Blocking sets inPG(n, 2)

As explained above, blocking set with respect to t-spacesh®&(n, q) is a set of points that
has nonempty intersection with evargpace of P@,q). It is calledminimalif deleting any
point from the set results in a set that no longer blocks-gfiaces. A blocking set with respect
to lines in a projective plane is simply calledobbcking set The smallest blocking sets with
respect td-spaces are characterised in the following theorem.

Theorem 3.1 (Bose and Burton [7])f B is a blocking set with respect to t-space®i@(n,q),
then|B| > |PG(n—t,q)|. Equality holds if and only if B is afn —t)-space.

A blocking set with respect to-spaces that contains gn — t)-space is calledrivial. The
smallest nontrivial blocking sets with respectispaces in PG, q) are characterised for> 2
in Theorem 3.2.

Theorem 3.2 (Beutelspacher [3], Heim [15])n PG(n,q), g> 2, the smallest nontrivial block-
ing sets with respect to t-spacdss t <n—1, are cones with vertex am—t — 2)-spacer,__»
and base a nontrivial blocking set of minimal cardinality in a plane skem,t@_».

It is known that ifq > 2, then PG2,q) has a nontrivial blocking set and that the size of such a
nontrivial blocking set is substantially bigger thaa- 1, the size of a line.

Theorem 3.3 Let B be a nontrivial blocking set fG(2,q), q > 2.
1. (Bruen [8]) [B| > g+ ,/G+ 1, with equality if and only if B is a Baer subplane.
2. (Blokhuis [4]) If g is a prime, thenB| > 3(q+1)/2. This bound is sharp.
3. (Blokhuis [5], Blokhuis et al. [6]) If g = p?*™%, p prime, &> 1, then|B| > max(q+ 1+
pe+L g+ 14 cpg?/®), where ¢ equals2~/3if p € {2,3} and1if p > 5.
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However, it is not hard to see thatdgf= 2, then every blocking set in R@ q) is trivial. Hence

the situation for nontrivial blocking sets with respectspaces in PG, 2) must be different

from the situation described in Theorem 3.2. This case has been studied during the stay and
some progress has been made in proving the following theorem. Since the proof is not yet
finished, it will be stated as a conjecture.

Conjecture 3.4

1. In PEn,2), n > 3, the smallest nontrivial blocking sets with respect to hyperplanes
areskeleton®f a solid in PGn, 2); these are sets of five points in a 3-space no four of
which are coplanar. I = 3, then these are the only minimal nontrivial blocking sets with
respect to planes.

2. Up to isomorphism, there is only one nontrivial minimal blocking set with respect to
lines in PG3,2). It consists of ten points and can be described dg U1, Ul3, wherel,
I> andls are three concurrent, not coplanar lines skew to thelline

3. In PGn,2), n > 3, the smallest nontrivial blocking sets with respect-8paces, K
t <n—2, have size2t+1 4 2n—t-1 4 2n—=2_1 and are cones with vertex am—t — 3)-
spacer,_t_3 and base a nontrivial minimal blocking set with respect to lines in a solid
skew toTt,—t_3.

Remark 3.5 e In [3], Beutelspacher notes that a skeleton of a 3-space imPGis a
nontrivial blocking set with respect to hyperplanes.

e Parts 1 and 2 of Conjecture 3.4 have already been proved and some lemmas have been
proved to facilitate proving part 3 of the conjecture.

3.2 Partial hemisystems

Let Q(4,q) denote thenonsingular quadridn PG(4,q) and Ws(q) the threedimensionalym-
plectic spacever GHQ).

A hemisysten?#f on Q(4,q) is a set of points on (#,qg) such that each line of @,q)
contains exactlyq+ 1)/2 points of /. If # is a hemisystem of (&,q), then|H| = (q+
1)(q? +1)/2. A partial hemisysten¥ on Q(4,q) is a set of points on (,q) such that each
line of Q(4,q) contains at mostg+ 1) /2 points of#. Thedeficiencyd of a partial hemisystem
H of Q(4,q) is by definition the number of points it lacks to be a hemisystem, whénrce
(Q+1)(q*+1)/2—|#H].

Since Q4,q) is the point-line dual of W(q), see e.g. [17§3.2], it makes sense to introduce
the dual notion: gpartial) dual hemisystert{* on Ws(q) is a set of lines on \3(qg) such that
each point of W(q) is incident with (at most)q+ 1)/2 lines of #*. The deficiencyd of a
partial dual hemisystem equaig+1)(g? 4 1) /2 — | H*|.

In the beginning of Section 3, the definition of a minihyper was given. However, the def-
inition given there was the one for a minihyper without weights. But in the context of dual
hemisystems, we will need the concept of a minihyper in its full generality.
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An {f,m;n,q}-minihyperis a pair(F,w), whereF is a subset of the point set of PGQq)
andw is a weight functiorw : PG(n,q) — N : P — w(P), satisfying (i)w(P) > 0< P € F, (ii)

S per W(P) = f, and (iii) min{$ pcy W(P) : H is a hyperplang=m.

The definition from the beginning of Section 3 is a special case of this one. Namely, if the
weight functionw from the general definition is a mapping oq@ 1}, the minihyper(F,w) can
be identified with its seff of points with weight one and the original definition of a minihyper
is obtained as a special case of the more general definition presented here.

The relation between minihypers and dual hemisystems is presented in the following two
theorems, which were proved in collaboration with Prof. Dr. Leo Storme (Ghent University)
during the visit. In these theorems, the following notation is use@igfa point of the projective
space, thestar(P) denotes the set of all lines through

Theorem 3.6 (with L. Storme) SupposeH ™ is a partial dual hemisystem &¥3(q) with defi-
ciencyd. Define a weight function w as follows:

W:PG3,g) — N:Pis %1— Istar(P) N 77|,
If F is the set of points oPG(3,q) with positive weight, theiiF,w) is a {d(q+ 1),6;3,q}-
minihyper.

The minihypers that occur in the statements of Theorem 3.6 belong to that special class
of minihypers that are equivalent to linear codes meeting the Griesmer bound, see Section 2.
Minihypers of this type have enjoyed special attention by researchers for the obvious reason that
they are related to codes. In [13], a result is proved that perfectly fits this case. This theorem
can be applied immediately to Theorem 3.6 to shed some light on the distribution of the points
that arenot sufficiently covered by lines 8f*. Forq= 2, leteq equal 2. Folg > 2, letq+ &4
denote the size of the smallest nontrivial blocking sets if2€; see Theorem 3.3 for some
lower bounds oy,

Corollary 3.7 SupposeH ™ is a partial dual hemisystem &¥3(q) with deficiencyd < gq. If w
is defined as in Theore®6 and F is the set of points ¢1G(3,q) with positive weight, then
(F,w) is a sum o® lines.

Remark 3.8 We have proved a similar theorem for partial dual hemisystems of the threedimen-
sionalHermitian varietyH(4,9°%) over GRg?). For definitions and the exact statement of the
theorem, see the attached n@te partial hemisystems

3.3 Partial t-spreads

As mentioned above, partial t-spreadof PG(n,q) is a set of mutually disjoint-spaces in
PG(n,q). Itis calledmaximalif no t-space can be added to obtain a larger partgread.

During my visit, | was interested in the following question: “What is the size of the smallest
maximal partialt-spreads of PG, q)?” and have obtained upper and lower bounds on this
size, see Theorem 3.9, which in a few cases are sharp and in many cases reasonably close to
one another. Under some extra assumptions (which might never be fulfilled), Theorem 3.13
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improves upon Theorem 3.9 and increases the number of cases in which the bounds are sharp
significantly.

From the definition of maximality, it follows that a partiapreads in PG(n, g) is maximal
if and only if the set of points covered I3yis a blocking set with respect tespaces. Hence, in
order to construct a small maximal partiegdpread, it makes sense to start from a small blocking
set with respect tb-spaces and to try to find a parttagpread which covers all its points and as
little extra points as possible.

The smallest blocking sets with respect#&paces are characterised in Theorems 3.2 and 3.3
and in Conjecture 3.4. The smallest ones(aret)-spaces. Hence, a natural approach is to start
from a maximal partial-spread of such afn—t)-space in P(, q) which is as large as possible
and to find mutually disjoint-spaces that cover the remaining points of fms-t)-space. It
is in this way that large maximal partitlspreads become interesting for the determination of
small maximal partiat-spreads. Upper bounds on the size of maximal parsgreads are
known [2, 9], but these upper bounds are not always sharp. The largest known examples are
constructed by Beutelspacher [2]. Using this construction irjrihet)-spaces and applying the
above reasoning yields reasonably small maximal pargakeads in PG, Q).

Using the bounds on the size of nontrivial blocking sets with respeespaces it is possible
to prove that a maximal partiédlspread not covering afm —t)-space always consists of more
t-spaces than the example constructed. Using the upper bound on the size of maximal partial
t-spreads, it is possible to obtain a lower bound for the size of maximal pagjmbads whose
elements cover afn—t)-space.

Combining the observations above, the following result is obtained.

Theorem 3.9 Let gt, n,q) denote the size of the smallest maximal partial t-spread&3m, q)
and write n=Kk(t+1)+t—14r,0<r <t. LetB=[(t+r—1)/2]. If k > 2, then the following
hold.

_q k(t+1) _1

1. Ifr =0, then gt,n,q) = el

2.1fr =1, then gty 5 + 2 — g+ 1< s(t,n.6) < qlpr gt + P - g+ 1

3. Ifr >1andt+1>2r thend?d (tfl)ll+(qr+1 q)/2+1<s(t,n,q) <qrqq:+)l

4. Ifr >1andt+1< 2r, then dq;?%lli_lljt(qr”—qr+q2r_t‘1+3q+1)/2§s(t,n,q)g
qrq<t+l FPtl g 1L

qt+

If $ is a maximal partial t-spread ifPG(n,q) whose size lies in the corresponding interval
above, therupc sT; contains an(n—t)-space inPG(n,q).

Corollary 3.10 1. InPG(2k+1,q), k> 2, the smallest maximal partial linespreads have

) 2k71
Slze % +q2—q+ 1.
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2. In PG(3k+2,q), k> 2, the smallest maximal partial planespreads have sﬂs,eﬂéqgk__ +
2
g°—q+1

Corollary 3.11 If n # 3, then the size of the smallest maximal partial linespread3G@n, q)
is known.

As mentioned above, the upper bounds on the size of maximal daspaéads in [2, 9] are
not sharp. However, there is a conjecture regarding the exact upper bound (it states that it is the
size of largest known examples).

Conjecture 3.12 (Eisfeld and Storme [10])f n+1=Kk(t+1)+r, 1 <r <t, then the largest

k —
maximal partiat-spreads in PG, q) have sizey % —q +1.
Assuming the correctness of this conjecture, the lower bounds from Theorem 3.9 can be
improved upon and the following results can be obtained.

Theorem 3.13 Let gt, n, g) denote the size of the smallest maximal partial t-sprea&@3m, q)
and write n=k(t+1)+t—14r, 0<r <t. LetB = [(t+r—1)/2] and assume that Conjec-
ture 3.12is true. If k> 2, then the following hold.

k(t+1) _1
1. Ifr =0, then §t,n,q) = quTl'
2. Ifr>0thendqt+1 2 4+gtt - q+1<s(tnq)<qrq +oPtl—g + 1.

If S is a maximal partial t-spread ifPG(n,q) whose size lies in the corresponding interval
above, thetur.c sTk contains an(n—t)-space inPG(n, ).

Corollary 3.14 Assume that Conjectu@12is correct. Then the following hold.

1. In PG((k+ 1)(t+1)+t—2,q9), k> 2, the smallest maximal partial t-spreads have size
K(t+1) _
A a7 —d + L

2. In PG((k+ 1)( + 1) +t—3,09), t > 1, k> 2, the smallest maximal partial t-spreads
q k(t+1)

have size {1 e Ligt—ql41

Corollary 3.15 If Conjecture3.12is true, then for nZ {5,6} the size of the smallest maximal
partial planespreads if?G(n, q) is known.

Remark 3.16 The results in this subsection are not yet entirely provedyfer2. In this case

they still depend on the outcome of the investigations from Subsection 3.1. If the conjecture
stated there is correct then the results from this subsection also haldH@:. In fact, only a
weaker version of the conjecture is needed: a nontrivial blocking set with respespétes,
1<t<n—1,in PGn,2) has size at least"2! ™1 - 2n—t-1 4 on—t=2_ 1,
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3.4 Constructing sets of MAXMOLS

The results in this subsection are joint work with Prof. Dr. Aagi@acs, Prof. Dr. Peter Sziklai
and Prof. Dr. Taras Sdnyi (Eotos Lo@and University).
An (s,r;1)-net r > 3, is an incidence structui2 = (P, B, 1)* satisfying

1. the relation~ on B, with | ~ mif | = mor if there exists no poirf® suchthat TP I m,is
an equivalence relation which hagquivalence classes; these classes are gadleadlel
classes

2. foralll,me B, if | £ m, then there exists a unique polsuch that I P I m;

3. every point lies in an element of each parallel class.
If these properties hold, then there exists an integer which the following properties hold:

e the number of lines in a parallel class equsls

the number of lines through a point equals

each line contains points;

there ares® points;

there aras lines.

If s> 1, thenr < s+ 1. Equality holds if and only iD is an affine plane.

As mentioned before, s, r)-netimmediately yields a set of- 2 MOLS(s) and vice versa.
Here, (s,r)-nets will be constructed to obtain sets of MOLS, which after careful examination
turn out to be sets of MAXMOLS.

There are different ways to constrystr)-nets. The approach followed here is to take as
points the points of A@&,q) and as lines certain sets g@fpoints. The parallel classes will be
sets consisting df translates of a line.

For the moment, our attention is restricted to the case wipex@ prime. We construct our
net as follows. The points of the net are the points of(A@). One parallel class of lines is
defined by the vertical translates of the graph of the funcfiox — x(@1/2, The graph of
this function determine&+ 3)/2 directions. Denote this set of directions determined Iy
Dt. Now for each of the remaining directiodss GF(q)™ \ D¢, where GFq)* = GF(q) U {0},
add the set of lines with directiosh as an extra parallel class. In this wayq(q+ 1)/2)-net
is obtained and hence a set (@f— 3)/2 MOLS(q). As mentioned in Section 2 proving the
maximality of a net is often the difficult part and this case is no exception. Fortunatgig &
prime, theorems of &lei [18] and Lo&sz and Schrijver [16] on functions determining specific
sets of directions help a lot to ease this task and the maximality of the net can be proved.

Theorem 3.17 (with A. Gacs, P. Sziklai and T. Sényi) For p > 2 prime, there existp— 3) /2
MAXMOLS (p).

Remark 3.18 For p > 13, these MAXMOLS are new.

4The elements d? are callechoints the elements dB are calledinesandI C (P x B)U(B x P) is a symmetric
incidence relation.
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4 Other activities

During my stay in Budapest | had the pleasure of having several interesting discussions which
might lead to future research projects:

e with Prof. Dr. Tanmas Sbhny (SZTAKI and ELTE) and Dr. Gerzsonéfi (SZTAKI)
on a paper that Dr. &ri is writing on the classification of small MDS-codes. As from
this classification he is able to draw conclusions on small arcs in projective spaces, it is
interesting to compare the results he obtains with the literature on arcs and see in which
cases these results are new and/or give some clues as to the situation for gandcal

e with Prof. Dr. Tan@s SBHny on functions in AG2,q) determining a small number of
directions and on constructions for sets of MAXMOLS using spreads and ovoids on finite
classical polar spaces.

e with Prof. Dr. Andias Gacs (ELTE) and Prof. Dr. Peter Sziklai (ELTE) on the topic of
Cameron-Liebler line classes in P%q).

e with Prof. Dr. Andias Gacs on the construction of maximal partial spreads of different
sizes in P@3,Q).

| also had the opportunity to attend several interesting lectures at SZTAKI, at the Anyi
Institute of Mathematics of the Hungarian Academy of Sciences and atdhé<Loiand
University.

During the stay, | gave three talks:

e Mixed partial spreads and MAXMOLS, Seminar on Finite Geometry at ELTE, 14 Novem-
ber 2003.

e Codes, spreads and Latin squares, SZTAKI, 21 November 2003.

e Applications of Ball's 1 modp result for ovoids of @4,q), Seminar on Finite Geometry
at ELTE, 28 November 2003.

5 Attachments

The following items are attached to this report.

e A preliminary version for a paper o8mall maximal partial t-spreads iRG(n,q), the
research for which was done during my stay in Budapest.

e Some notes oNontrivial blocking sets ifPG(n, 2), research that was initiated during the
stay and that will be continued.

e Some notes oRartial hemisystemgoint work with Prof. Dr. Leo Storme, part of which
was done during the stay.
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e A printout of the slides foCodes, spreads and Latin squaragalk presented at the SZ-
TAKI Centre of Excellence in Information Technology and Automation on 21 November
2003. The original slides are in colour and can be found at the URL

http://lwww.sztaki.hu/infolab/ferret-govaerts03.html
of the web page announcing the talk.

e Lecture notes foMixed partial spreads and MAXMOI & talk presented at the Seminar
on Finite Geometry at &vos Lotand University on 14 November 2003.

e Lecture notes foApplications of Ball'sl mod p result for ovoids d(4,q), a talk pre-
sented at the Seminar on Finite Geometry @tives Lorand University on 28 November
2003.
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