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2 Research objectives

The aim of this research visit is the study of objects in Galois geometries that are closely related
on the one hand to Latin squares and on the other hand to optimal linear codes.

Latin squares

A Latin square of order sis ans×s array with entries in the setS= {1,2, . . .s} such that each
row and each column contains each element ofSexactly once. Two Latin squaresL = (l i j ) and
M = (mi j ) of orders are calledorthogonalif the set{(l i j ,mi j ) : 1≤ i, j ≤ s} equals the setS2.
A set of t mutually orthogonal Latin squares of orders is denoted byt MOLS(s). It is called
maximalif there exists no Latin square of orders that is orthogonal to all its elements, in which
case it is denoted byt MAXMOLS(s).

Latin squares have many applications, for example in the design of statistical experiments, in
the organisation of tournaments and in the domain of massive parallel computing. The problem
of determining the numberst ands for which t MOLS(s) exist is an old one, originating by
Euler [11] in 1782.

Optimal linear codes

In many cases it is inevitable that errors occur during the transmission of data or that stored data
is corrupted. In the former case think of atmospheric disturbances that distort data transmitted
by a satellite; in the latter case of scratches on a Compact Disc. By adding a certain amount of
redundant information to the transmitted or stored data, the theory of error-correcting codes can
overcome the possibly disastrous effects of such inevitable errors by allowing to retrieve correct
information form corrupted data.

For practical purposes, there is great interest in linear codes. Alinear [n,k,d;q]-code is
a k-dimensional vector space inV(n,q), the n-dimensional vector space over the finite field
of orderq, with minimum Hamming distanced. The parameters of the code are thelength n
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(which determines the size of one codeword, i.e., the amount of data needed to encode one piece
of information), thedimension d(which determines the number of codewords, i.e., the number
of different messages that can be encoded) and theminimum distance d(which determines the
number of errors the receiver of a message can detect and correct). Hence one is interested in
codes with small length, large dimension and large minimum distance. However, these different
requirements contradict one another: there exist theoretical limits on the size of one of these
parameters in function of the other two. Codes that attain one of these limits are calledoptimal.
Here we mention two of these bounds. TheGriesmer bound[14] states that an[n,k,d;q]-code
satisfiesn≥ ∑k−1

i=0 dd/qie, while theSingleton bound[19] for linear codes gives the restriction
d≤ n−k+1. A code attaining the former bound is called acode attaining the Griesmer bound;
one attaining the latter bound is called anMDS code.

Latin squares and partial spreads

One way to construct sets of mutually orthogonal Latin squares is to find(s, r)-nets1, since it is
well-known that a set ofr−2 MOLS(s) yields an(s, r)-net and vice versa. It is here that partial
spreads2 come into play, for from a partial spread an(s, r)-net can be obtained. If one wants to
construct maximal sets of MOLS from partial spreads, then the partial spread must be maximal,
but this necessary condition is not sufficient. In addition, the net that originates from the partial
spread must also be maximal. It is this part of the construction, showing that the associated net
is maximal, that is often the most difficult. Still, in several instances, see e.g. [1] and [12], this
obstacle was overcome to show that certain maximal partial spreads yield sets of MAXMOLS.

Optimal codes, arcs and blocking sets

To clarify the relation between optimal linear codes and certain sets of points in finite projective
spaces, we mention the following two equivalences3:

• there is a one-one correspondence between certain types of multiple blocking sets in
PG(n,q), so-called{ f ,m;n,q}-minihypers wheref and m satisfy well-defined condi-
tions, and linear codes meeting the Griesmer bound;

• the study of MDS codes is equivalent to the study of arcs in finite projective spaces.

3 Results obtained during the visit

We will use the following notations and definitions.

• GF(q) denotes the finite field of orderq. Henceq = ph for some primep and some
positive integerh.

1For the definition of(s, r)-nets, see Subsection 3.4.
2For the definition of partial spreads, see the beginning of Section 3.
3For the definitions of multiple blocking sets, minihypers and arcs, see the beginning of Section 3.
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• AG(n,q) denotes then-dimensional affine space over GF(q).

• PG(n,q) denotes then-dimensional projective space over GF(q).

• A t-spacein PG(n,q) is at-dimensional subspace of PG(n,q).

• A point (respectivelyline, plane, solid, hyperplane) in PG(n,q) is a t-space wheret = 0
(respectivelyt = 1, t = 2, t = 3, t = n−1).

• A k-fold blocking set with respect to t-spaces inPG(n,q) is a set of points in PG(n,q) that
intersects everyt-space of PG(n,q) in at leastk points.

• An { f ,m;n,q}-minihyperis anm-fold blocking set with respect to hyperplanes in PG(n,q)
that is not an(m+1)-fold blocking set with respect to hyperplanes in PG(n,q).

• A k-arc in PG(n,q) is a set ofk points such that no hyperplane containsn+1 of them.

• A partial t-spreadin PG(n,q) is a set of mutually disjointt-spaces in PG(n,q).

3.1 Blocking sets inPG(n,2)

As explained above, ablocking set with respect to t-spaces inPG(n,q) is a set of points that
has nonempty intersection with everyt-space of PG(n,q). It is calledminimal if deleting any
point from the set results in a set that no longer blocks allt-spaces. A blocking set with respect
to lines in a projective plane is simply called ablocking set. The smallest blocking sets with
respect tot-spaces are characterised in the following theorem.

Theorem 3.1 (Bose and Burton [7])If B is a blocking set with respect to t-spaces inPG(n,q),
then|B| ≥ |PG(n− t,q)|. Equality holds if and only if B is an(n− t)-space.

A blocking set with respect tot-spaces that contains an(n− t)-space is calledtrivial . The
smallest nontrivial blocking sets with respect tot-spaces in PG(n,q) are characterised forq> 2
in Theorem 3.2.

Theorem 3.2 (Beutelspacher [3], Heim [15])In PG(n,q), q>2, the smallest nontrivial block-
ing sets with respect to t-spaces,1≤ t ≤ n−1, are cones with vertex an(n−t−2)-spaceπn−t−2

and base a nontrivial blocking set of minimal cardinality in a plane skew toπn−t−2.

It is known that ifq> 2, then PG(2,q) has a nontrivial blocking set and that the size of such a
nontrivial blocking set is substantially bigger thanq+1, the size of a line.

Theorem 3.3 Let B be a nontrivial blocking set ofPG(2,q), q> 2.

1. (Bruen [8]) |B| ≥ q+
√

q+1, with equality if and only if B is a Baer subplane.

2. (Blokhuis [4]) If q is a prime, then|B| ≥ 3(q+1)/2. This bound is sharp.

3. (Blokhuis [5], Blokhuis et al. [6]) If q = p2e+1, p prime, e≥ 1, then|B| ≥max(q+1+
pe+1,q+1+cpq2/3), where cp equals2−1/3 if p ∈ {2,3} and1 if p≥ 5.
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However, it is not hard to see that ifq = 2, then every blocking set in PG(2,q) is trivial. Hence
the situation for nontrivial blocking sets with respect tot-spaces in PG(n,2) must be different
from the situation described in Theorem 3.2. This case has been studied during the stay and
some progress has been made in proving the following theorem. Since the proof is not yet
finished, it will be stated as a conjecture.

Conjecture 3.4

1. In PG(n,2), n≥ 3, the smallest nontrivial blocking sets with respect to hyperplanes
areskeletonsof a solid in PG(n,2); these are sets of five points in a 3-space no four of
which are coplanar. Ifn= 3, then these are the only minimal nontrivial blocking sets with
respect to planes.

2. Up to isomorphism, there is only one nontrivial minimal blocking set with respect to
lines in PG(3,2). It consists of ten points and can be described asl ∪ l1∪ l2∪ l3, wherel1,
l2 andl3 are three concurrent, not coplanar lines skew to the linel .

3. In PG(n,2), n≥ 3, the smallest nontrivial blocking sets with respect tot-spaces, 1≤
t ≤ n−2, have size 2n−t+1+2n−t−1+2n−t−2−1 and are cones with vertex an(n− t−3)-
spaceπn−t−3 and base a nontrivial minimal blocking set with respect to lines in a solid
skew toπn−t−3.

Remark 3.5 • In [3], Beutelspacher notes that a skeleton of a 3-space in PG(n,2) is a
nontrivial blocking set with respect to hyperplanes.

• Parts 1 and 2 of Conjecture 3.4 have already been proved and some lemmas have been
proved to facilitate proving part 3 of the conjecture.

3.2 Partial hemisystems

Let Q(4,q) denote thenonsingular quadricin PG(4,q) and W3(q) the threedimensionalsym-
plectic spaceover GF(q).

A hemisystemH on Q(4,q) is a set of points on Q(4,q) such that each line of Q(4,q)
contains exactly(q+ 1)/2 points ofH . If H is a hemisystem of Q(4,q), then |H | = (q+
1)(q2 + 1)/2. A partial hemisystemH on Q(4,q) is a set of points on Q(4,q) such that each
line of Q(4,q) contains at most(q+1)/2 points ofH . Thedeficiencyδ of a partial hemisystem
H of Q(4,q) is by definition the number of points it lacks to be a hemisystem, whenceδ =
(q+1)(q2 +1)/2−|H |.

Since Q(4,q) is the point-line dual of W3(q), see e.g. [17,§3.2], it makes sense to introduce
the dual notion: a(partial) dual hemisystemH ∗ on W3(q) is a set of lines on W3(q) such that
each point of W3(q) is incident with (at most)(q+ 1)/2 lines ofH ∗. The deficiencyδ of a
partial dual hemisystem equals(q+1)(q2 +1)/2−|H ∗|.

In the beginning of Section 3, the definition of a minihyper was given. However, the def-
inition given there was the one for a minihyper without weights. But in the context of dual
hemisystems, we will need the concept of a minihyper in its full generality.
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An { f ,m;n,q}-minihyperis a pair(F,w), whereF is a subset of the point set of PG(n,q)
andw is a weight functionw : PG(n,q)→ N : P 7→ w(P), satisfying (i)w(P)> 0⇔ P∈ F , (ii)
∑P∈F w(P) = f , and (iii) min{∑P∈H w(P) : H is a hyperplane}= m.

The definition from the beginning of Section 3 is a special case of this one. Namely, if the
weight functionw from the general definition is a mapping onto{0,1}, the minihyper(F,w) can
be identified with its setF of points with weight one and the original definition of a minihyper
is obtained as a special case of the more general definition presented here.

The relation between minihypers and dual hemisystems is presented in the following two
theorems, which were proved in collaboration with Prof. Dr. Leo Storme (Ghent University)
during the visit. In these theorems, the following notation is used: ifP is a point of the projective
space, thenstar(P) denotes the set of all lines throughP.

Theorem 3.6 (with L. Storme)SupposeH ∗ is a partial dual hemisystem ofW3(q) with defi-
ciencyδ. Define a weight function w as follows:

w : PG(3,q)→ N : P 7→ q+1
2
−|star(P)∩H ∗|.

If F is the set of points ofPG(3,q) with positive weight, then(F,w) is a {δ(q+ 1),δ;3,q}-
minihyper.

The minihypers that occur in the statements of Theorem 3.6 belong to that special class
of minihypers that are equivalent to linear codes meeting the Griesmer bound, see Section 2.
Minihypers of this type have enjoyed special attention by researchers for the obvious reason that
they are related to codes. In [13], a result is proved that perfectly fits this case. This theorem
can be applied immediately to Theorem 3.6 to shed some light on the distribution of the points
that arenot sufficiently covered by lines ofH ∗. For q = 2, let εq equal 2. Forq> 2, let q+ εq

denote the size of the smallest nontrivial blocking sets in PG(2,q); see Theorem 3.3 for some
lower bounds onεq.

Corollary 3.7 SupposeH ∗ is a partial dual hemisystem ofW3(q) with deficiencyδ < εq. If w
is defined as in Theorem3.6 and F is the set of points ofPG(3,q) with positive weight, then
(F,w) is a sum ofδ lines.

Remark 3.8 We have proved a similar theorem for partial dual hemisystems of the threedimen-
sionalHermitian varietyH(4,q2) over GF(q2). For definitions and the exact statement of the
theorem, see the attached noteOn partial hemisystems.

3.3 Partial t-spreads

As mentioned above, apartial t-spreadof PG(n,q) is a set of mutually disjointt-spaces in
PG(n,q). It is calledmaximalif no t-space can be added to obtain a larger partialt-spread.

During my visit, I was interested in the following question: “What is the size of the smallest
maximal partialt-spreads of PG(n,q)?” and have obtained upper and lower bounds on this
size, see Theorem 3.9, which in a few cases are sharp and in many cases reasonably close to
one another. Under some extra assumptions (which might never be fulfilled), Theorem 3.13
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improves upon Theorem 3.9 and increases the number of cases in which the bounds are sharp
significantly.

From the definition of maximality, it follows that a partialt-spreadS in PG(n,q) is maximal
if and only if the set of points covered byS is a blocking set with respect tot-spaces. Hence, in
order to construct a small maximal partialt-spread, it makes sense to start from a small blocking
set with respect tot-spaces and to try to find a partialt-spread which covers all its points and as
little extra points as possible.

The smallest blocking sets with respect tot-spaces are characterised in Theorems 3.2 and 3.3
and in Conjecture 3.4. The smallest ones are(n−t)-spaces. Hence, a natural approach is to start
from a maximal partialt-spread of such an(n−t)-space in PG(n,q) which is as large as possible
and to find mutually disjointt-spaces that cover the remaining points of this(n− t)-space. It
is in this way that large maximal partialt-spreads become interesting for the determination of
small maximal partialt-spreads. Upper bounds on the size of maximal partialt-spreads are
known [2, 9], but these upper bounds are not always sharp. The largest known examples are
constructed by Beutelspacher [2]. Using this construction in the(n− t)-spaces and applying the
above reasoning yields reasonably small maximal partialt-spreads in PG(n,q).

Using the bounds on the size of nontrivial blocking sets with respect tot-spaces it is possible
to prove that a maximal partialt-spread not covering an(n− t)-space always consists of more
t-spaces than the example constructed. Using the upper bound on the size of maximal partial
t-spreads, it is possible to obtain a lower bound for the size of maximal partialt-spreads whose
elements cover an(n− t)-space.

Combining the observations above, the following result is obtained.

Theorem 3.9 Let s(t,n,q) denote the size of the smallest maximal partial t-spreads inPG(n,q)
and write n= k(t +1)+ t−1+ r, 0≤ r ≤ t. Letβ = d(t + r−1)/2e. If k≥ 2, then the following
hold.

1. If r = 0, then s(t,n,q) = qk(t+1)−1
qt+1−1 .

2. If r = 1, then qqk(t+1)−1
qt+1−1 +q2−q+1≤ s(t,n,q)≤ qqk(t+1)−1

qt+1−1 +qβ+1−q+1.

3. If r > 1 and t+ 1≥ 2r, then qr qk(t+1)−1
qt+1−1 + (qr+1−qr)/2+ 1≤ s(t,n,q) ≤ qr qk(t+1)−1

qt+1−1 +

qβ+1−qr +1.

4. If r > 1 and t+1< 2r, then qr qk(t+1)−1
qt+1−1 +(qr+1−qr +q2r−t−1+3q+1)/2≤ s(t,n,q)≤

qr qk(t+1)−1
qt+1−1 +qβ+1−qr +1.

If S is a maximal partial t-spread inPG(n,q) whose size lies in the corresponding interval
above, then∪πt∈S πt contains an(n− t)-space inPG(n,q).

Corollary 3.10 1. In PG(2k+1,q), k≥ 2, the smallest maximal partial linespreads have

size qq
2k−1

q2−1 +q2−q+1.
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2. In PG(3k+ 2,q), k≥ 2, the smallest maximal partial planespreads have size qq3k−1
q3−1 +

q2−q+1.

Corollary 3.11 If n 6= 3, then the size of the smallest maximal partial linespreads inPG(n,q)
is known.

As mentioned above, the upper bounds on the size of maximal partialt-spreads in [2, 9] are
not sharp. However, there is a conjecture regarding the exact upper bound (it states that it is the
size of largest known examples).

Conjecture 3.12 (Eisfeld and Storme [10])If n+ 1 = k(t + 1) + r, 1≤ r ≤ t, then the largest

maximal partialt-spreads in PG(n,q) have sizeqr qk(t+1)−1

qt+1−1 −qr +1.

Assuming the correctness of this conjecture, the lower bounds from Theorem 3.9 can be
improved upon and the following results can be obtained.

Theorem 3.13 Let s(t,n,q) denote the size of the smallest maximal partial t-spreads inPG(n,q)
and write n= k(t + 1) + t−1+ r, 0≤ r ≤ t. Let β = d(t + r−1)/2e and assume that Conjec-
ture3.12 is true. If k≥ 2, then the following hold.

1. If r = 0, then s(t,n,q) = qk(t+1)−1
qt+1−1 .

2. If r > 0, then qr qk(t+1)−1
qt+1−1 +qr+1−qr +1≤ s(t,n,q)≤ qr qk(t+1)−1

qt+1−1 +qβ+1−qr +1.

If S is a maximal partial t-spread inPG(n,q) whose size lies in the corresponding interval
above, then∪πt∈S πt contains an(n− t)-space inPG(n,q).

Corollary 3.14 Assume that Conjecture3.12 is correct. Then the following hold.

1. In PG((k+1)(t +1)+ t−2,q), k≥ 2, the smallest maximal partial t-spreads have size

qt qk(t+1)−1
qt+1−1 +qt+1−qt +1.

2. In PG((k+ 1)(t + 1) + t − 3,q), t > 1, k≥ 2, the smallest maximal partial t-spreads

have size qt−1qk(t+1)−1
qt+1−1 +qt−qt−1 +1.

Corollary 3.15 If Conjecture3.12 is true, then for n6∈ {5,6} the size of the smallest maximal
partial planespreads inPG(n,q) is known.

Remark 3.16 The results in this subsection are not yet entirely proved forq = 2. In this case
they still depend on the outcome of the investigations from Subsection 3.1. If the conjecture
stated there is correct then the results from this subsection also hold forq = 2. In fact, only a
weaker version of the conjecture is needed: a nontrivial blocking set with respect tot-spaces,
1≤ t < n−1, in PG(n,2) has size at least 2n−t+1 +2n−t−1 +2n−t−2−1.
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3.4 Constructing sets of MAXMOLS

The results in this subsection are joint work with Prof. Dr. András Ǵacs, Prof. Dr. Peter Sziklai
and Prof. Dr. Taḿas Sz̋onyi (Eötös Loŕand University).

An (s, r;1)-net, r ≥ 3, is an incidence structureD = (P,B,I)4 satisfying

1. the relation∼ onB, with l ∼m if l = mor if there exists no pointP such thatl I P I m, is
an equivalence relation which hasr equivalence classes; these classes are calledparallel
classes;

2. for all l ,m∈ B, if l 6∼m, then there exists a unique pointP such thatl I P I m;

3. every point lies in an element of each parallel class.

If these properties hold, then there exists an integers for which the following properties hold:

• the number of lines in a parallel class equalss;

• the number of lines through a point equalsr;

• each line containss points;

• there ares2 points;

• there arers lines.

If s> 1, thenr ≤ s+1. Equality holds if and only ifD is an affine plane.
As mentioned before, an(s, r)-net immediately yields a set ofr−2 MOLS(s) and vice versa.

Here,(s, r)-nets will be constructed to obtain sets of MOLS, which after careful examination
turn out to be sets of MAXMOLS.

There are different ways to construct(s, r)-nets. The approach followed here is to take as
points the points of AG(2,q) and as lines certain sets ofq points. The parallel classes will be
sets consisting ofq translates of a line.

For the moment, our attention is restricted to the case whereq is a prime. We construct our
net as follows. The points of the net are the points of AG(2,q). One parallel class of lines is
defined by the vertical translates of the graph of the functionf : x 7→ x(q+1)/2. The graph of
this function determines(q+ 3)/2 directions. Denote this set of directions determined byf by
D f . Now for each of the remaining directionsd∈GF(q)+ \D f , where GF(q)+ = GF(q)∪{∞},
add the set of lines with directiond as an extra parallel class. In this way a(q,(q+ 1)/2)-net
is obtained and hence a set of(q− 3)/2 MOLS(q). As mentioned in Section 2 proving the
maximality of a net is often the difficult part and this case is no exception. Fortunately, ifq is a
prime, theorems of Ŕedei [18] and Lov́asz and Schrijver [16] on functions determining specific
sets of directions help a lot to ease this task and the maximality of the net can be proved.

Theorem 3.17 (with A. Gács, P. Sziklai and T. Sz̋onyi) For p> 2 prime, there exist(p−3)/2
MAXMOLS(p).

Remark 3.18 For p≥ 13, these MAXMOLS are new.

4The elements ofP are calledpoints, the elements ofB are calledlinesandI⊆ (P×B)∪(B×P) is a symmetric
incidence relation.
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4 Other activities

During my stay in Budapest I had the pleasure of having several interesting discussions which
might lead to future research projects:

• with Prof. Dr. Taḿas Sz̋ony (SZTAKI and ELTE) and Dr. Gerzson Kéri (SZTAKI)
on a paper that Dr. Ḱeri is writing on the classification of small MDS-codes. As from
this classification he is able to draw conclusions on small arcs in projective spaces, it is
interesting to compare the results he obtains with the literature on arcs and see in which
cases these results are new and/or give some clues as to the situation for generaln andq.

• with Prof. Dr. Taḿas Sz̋ony on functions in AG(2,q) determining a small number of
directions and on constructions for sets of MAXMOLS using spreads and ovoids on finite
classical polar spaces.

• with Prof. Dr. Andŕas Ǵacs (ELTE) and Prof. Dr. Peter Sziklai (ELTE) on the topic of
Cameron-Liebler line classes in PG(3,q).

• with Prof. Dr. Andŕas Ǵacs on the construction of maximal partial spreads of different
sizes in PG(3,q).

I also had the opportunity to attend several interesting lectures at SZTAKI, at the Alfréd Ŕenyi
Institute of Mathematics of the Hungarian Academy of Sciences and at the Eötvös Loŕand
University.

During the stay, I gave three talks:

• Mixed partial spreads and MAXMOLS, Seminar on Finite Geometry at ELTE, 14 Novem-
ber 2003.

• Codes, spreads and Latin squares, SZTAKI, 21 November 2003.

• Applications of Ball’s 1 modp result for ovoids of Q(4,q), Seminar on Finite Geometry
at ELTE, 28 November 2003.

5 Attachments

The following items are attached to this report.

• A preliminary version for a paper onSmall maximal partial t-spreads inPG(n,q), the
research for which was done during my stay in Budapest.

• Some notes onNontrivial blocking sets inPG(n,2), research that was initiated during the
stay and that will be continued.

• Some notes onPartial hemisystems, joint work with Prof. Dr. Leo Storme, part of which
was done during the stay.
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• A printout of the slides forCodes, spreads and Latin squares, a talk presented at the SZ-
TAKI Centre of Excellence in Information Technology and Automation on 21 November
2003. The original slides are in colour and can be found at the URL

http://www.sztaki.hu/infolab/ferret-govaerts03.html
of the web page announcing the talk.

• Lecture notes forMixed partial spreads and MAXMOLS, a talk presented at the Seminar
on Finite Geometry at Ëotvös Loŕand University on 14 November 2003.

• Lecture notes forApplications of Ball’s1 mod p result for ovoids ofQ(4,q), a talk pre-
sented at the Seminar on Finite Geometry at Eötvös Loŕand University on 28 November
2003.
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