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Abstract

The smallest nontrivial blocking sets with respect to t-spaces in PG(n; 2) are

determined.

1 Introduction

Let PG(n; q) denote the n-dimensional projective space the �nite �eld of order q. A

blocking set with respect to t-spaces in PG(n; q) is a set of points that has nonempty

intersection with every t-space of PG(n; q). Sometimes a blocking set with respect to

t-spaces in PG(n; q) is called an (n� t)-blocking set ref . A blocking set with respect to

lines in a projective plane is simply called a blocking set.

Theorem 1.1 (Bose and Burton [5]) If B is a blocking set with respect to t-spaces in

PG(n; q), then jBj � jPG(n� t; q)j. Equality holds if and only if B is an (n� t)-space.

A blocking set with respect to t-spaces that contains an (n� t)-space is called trivial. The

smallest nontrivial blocking sets with respect to t-spaces in PG(n; q) are characterised for

q > 2 in Theorem 1.3.

Theorem 1.2 (Beutelspacher [1], Heim [7]) In PG(n; q), q > 2, the smallest non-

trivial blocking sets with respect to t-spaces, 1 � t � n � 1, are cones with vertex an

(n � t � 2)-space �n�t�2 and base a nontrivial blocking set of minimal cardinality in a

plane skew to �n�t�2.

It is known that if q > 2, then PG(2; q) has a nontrivial blocking set and that the size of

such a nontrivial blocking set is substantially bigger than q + 1, the size of a line.

Theorem 1.3 Let B be a nontrivial blocking set of PG(2; q), q > 2.

1. (Bruen [6]) jBj � q +
p
q + 1, with equality if and only if B is a Baer subplane.

2. (Blokhuis [2]) If q is a prime, then jBj � 3(q + 1)=2. This bound is sharp.

3. (Blokhuis [3], Blokhuis et al. [4]) If q = p
2e+1, p prime, e � 1, then jBj �

max(q + 1 + p
e+1

; q + 1 + cpq
2=3), where cp equals 2�1=3 if p 2 f2; 3g and 1 if p � 5.

1



However, it is not hard to see that if q = 2, then every blocking set in PG(2; q) is trivial.

Hence the situation for nontrivial blocking sets with respect to t-spaces in PG(n; q) must

be di�erent from the situation described in Theorem 1.2. In this paper we handle this

case and prove the following.

Theorem 1.4 (Check)

1. In PG(n; 2), n � 3, the smallest nontrivial blocking sets with respect to hyperplanes

are skeletons of a solid in PG(n; 2); these are sets of �ve points in a 3-space no four

of which are coplanar. If n = 3, then these are the only minimal nontrivial blocking

sets with respect to planes.

2. Up to isomorphism, there is only one nontrivial minimal blocking set with respect

to lines in PG(3; 2). It consists of ten points and can be described as l [ l1 [ l2 [ l3,

where l1, l2 and l3 are three concurrent, not coplanar lines skew to the line l.

3. In PG(n; 2), n � 3, the smallest nontrivial blocking sets with respect to t-spaces,

1 � t � n� 2, have size 2n�t+1 + 2n�t�1 + 2n�t�2 � 1 and are cones with vertex an

(n � t � 3)-space �n�t�3 and base a nontrivial minimal blocking set with respect to

lines in a solid skew to �n�t�3.

In Section 2, the threedimensional case is handled, while Section 3 deals with larger

dimensional spaces.

2 In three dimensions

2.1 With respect to planes

Suppose B is a minimal nontrivial blocking set with respect to planes in PG(3; 2). Let P ,

Q and R be three points of B and let � be the plane hP;Q;Ri. In � there is a unique line,

say l, that contains no point of fP;Q;Rg. It cannot contain a point of B, since otherwise

� would contain a line contained in B. Let �0 and �
00 be the remaining planes through

l. They both have to contain a point of B. Let S 2 �
0 \ B and T 2 �

00 \ B. Clearly,

fP;Q;R; S; Tg is a blocking set with respect to planes. Hence B = fP;Q;R; S; Tg. Since
B is nontrivial, it contains no lines.

We now show that this implies that no four of its points are coplanar. Assume that B

contains a set A consisting of four coplanar points. The set A cannot contain fP;Q;Rg,
hence it must contain S, T and two points of fP;Q;Rg, say, without loss of generality, P
and Q. Now consider the lines ST and PQ. Since they lie in a plane, they intersect. If

they would intersect in the third point of PQ, which is a point of l, then S and T would

be contained in the same plane through l, a contradiction. Hence they intersect in either

P or Q, implying that the line ST is contained in B, a contradiction.

Hence B consists of �ve points, no four of which are collinear. Clearly such a set

contains no line. Moreover, it is known that such a set is, up to collineations, unique. Is

is called a skeleton of PG(3; 2).
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2.2 With respect to lines

Suppose B is a minimal nontrivial blocking set with respect to lines in PG(3; 2). If � is

a plane, then B \ � is a blocking set in �, such that � contains a line contained in B.

Let P be a point in B, let l be a tangent through P and let �1, �2 and �3 be the three

planes through l. Each of these planes must contain a line consisting of points contained

in B. These lines must pass through P . Let li � �i, i 2 f1; 2; 3g, be such lines. Let

l
0

i
:= hlj; lki \ �i for all i; j; k satifying fi; j; kg = f1; 2; 3g. Since B contains no plane,

the lines l1, l2 and l3 are not coplanar, hence l
0

i
is the line in �i through P di�eren from

l and li. The lines l01, l
0

2 and l
0

3 are coplanar and the plane hl01; l02i must contain a line l0

consisting of points of B. This line cannot equal l0
i
for any 1 � i � 3, for otherwise the

plane hlj; lki that contains l0i would be contained in B. Hence it intersects l01, l
0

2 and l
0

3 in

distinct points P 0

1, P
0

2 and P
0

3.

Hence B contains A := l
0 [ ([ili). We now check that A is a minimal blocking set

with respect to lines to conclude that B = A and that it is a nontrivial minimal blocking

set with respect to lines in PG(n; 2) of size ten.

To check that A is blocking set it suÆces to show that every plane contains a line

contained in A. The planes through P are the planes �1, �2, �3, hl1; l2i, hl2; l3i, hl3; l1i
and hP; P 0

1; P
0

2i. Clearly, each one of them contains a line contained in A. Now let �

be any plane not through P . It intersects l0 in a point P 0

i
for some i 2 f1; 2; 3g. Let

fi; j; kg = f1; 2; 3g. Then � intersects hl0
i
; lji = hl0

i
; lj; lki in a line m containing P 0

i
. Since

� does not pass through P , the line m intersects lj and lk in distinct points of B. Hence

m is contained in B.

It is easy to check that removing a point of A will result in a line skew to the new set.

Hence A is a minimal blocking set of size ten.

3 In more dimensions

3.1 With respect to hyperplanes

Suppose B is a minimal notrivial blocking set with respect to hyperplanes in PG(n; 2),

n � 4. As above, consider any three points fP;Q;Rg and let l the line in � = hP;Q;Ri
skew to B. Let S be any point of B outside � and let �3 be the solid hS; �i. Let �0 be

the plane hS; li and let �00 be the third plane in �3 through l. If �00 contains a point of

B, then jBj = 5 and the reasoning from Subsection 2.1 can be copied to show that B

is a skeleton of a solid in PG(n; 2). If �00 contains no points of B, then all hyperplanes

of PG(n; 2) containing �
00 but not �3 must contain a point of B n �3, implying that B

contains at least two points outside �3, such that jBj � 6.

3.2 With respect to lines

Suppose that n � 4, that B is a nontrivial blocking set with respect to lines in PG(n; 2)

of size at most 2n + 2n�2 + 2n�3 � 1 and that Theorem 1.3 holds in PG(n0; 2) for every

3 � n
0

< n.

3



Let T denote the set of (n� 2)-spaces contained in B.

Lemma 3.1 If a hyperplane contains three elements of T , then it contains four. These

four (n � 2)-spaces pass through a common (n � 4)-space and form a dual hyperoval in

the quotient space with respect to this (n � 4)-space. If there is a hyperplane containing

four elements of T , then jBj � 2n + 2n�2 + 2n�3 � 1. A hyperplane cannot contain more

than four elements of T .

Proof Write this down. �

Lemma 3.2 Every point of B is contained in at least three elements of T . If a point of

B is contained in exactly three elements of T , then jBj = 2n + 2n�2 + 2n�3 � 1.

Proof Write this down. �

Lemma 3.3 If all elements of T pas through a commom point, then B is as in Theo-

rem 1.4.

Proof Write this down. �

3.3 With respect to t-spaces, 1 < t < n� 1
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