1 The existence of an equivalent martingale measure
for all stopped processes does not implies the exis-
tence of an absolute continuous martingale measure
for the whole process even in the dyadic case

We fix a probability space (2, F, IP). We take (g;, ¢ > 1) to be independent and identically
distributed with P(e; = +1) = IP(e; = —1) = 1/2. We define the filtration

Fi=o0(e1,... 1)

We consider a financial model with two assets, the price process S of the risky asset is given
by
t
St =8y + 2(61 + Oti),

i=1
where so and —1 < «a; < 1 real constants. For the moment we take the bond price identically
1.

W. Schachermayer asked the following question in this context:

Is it true that if for all stopping time T satisfying IP(T < oco) = 1 there exists an equiv-
alent martingale measure on Fr for the stopped process ST then there exists a martingale
measure () << IP for the whole process 7

We shall show that the answer to this question is no whenever i a? = oo.

First we prove that, for any ¢ € IN there exists one and only onie:measure (Q; defined on
F; such that S;, ¢ <t is a (Q;-martingale. Furthermore Q; ~ IP.

We set .

%(@:m, 1<i<t) :i:Hl(l_mai)' (1.1)
Using independence, one verifies directly that this is an (equivalent) martingale measure up
to time ¢t. Uniqueness follows by induction: it is trivial for £ = 1, let us suppose that the

assertion is true up to time ¢, we would like to show it for ¢ + 1, assuming that the only

martingale measure on F; is (J;. We take any martingale measure N up to time ¢ + 1. We



necessarily have
1 —nagsq
—y

Taking any set A € F;, there is n € {+1,—1} and B € F; such that A = BN {e;11 = n}.
This proves N(A) = Q11(4).

Ny =n|F) =

The family @); is compatible so it defines a unique martingale measure on o(g;, 7 >
1). We denote this measure by ). Using Kakutani’s theorem we infer that ) and IP
are mutually singular provided that 3°, a? = oo. So there is no absolutely continuous
martingale measure in this case.

We now show that there is an equivalent martingale measure on Fr for the stopped
process ST, where T is an almost surely finite stopping time. The restrictions of @ on F;
defined by (1.1) are equivalent to IP. By Theorem 2.36 on p. 217 of [7] Q|Fr ~ IP|Fr holds
iff

T

Y (VIT+a+VI—q) < o

=1

and

ZT: 1 N 1 -
Q.
i=1 Vita  V1—o

It is easy to check (using Taylor-series expansion) that both conditions are equivalent to

T
2

D af < oo,

i=1

which is trivially true for a.s. finite 7T'.

2 The set of equivalent martingale measures is not
o(L', L) compact

In this section we consider a one-step market model with one asset. We demonstrate that
even in this simple case the set of martingale measures fails to be (L', L®) compact.
We suppose that the return R of some risky asset between time 0 and 1 is uniformly

distributed on [—1,1]. The density d@/dIP provides a martingale measure if and only if

dQ
E5R=0.



We may confine our attention to d@)/dIP which are o(R)-measurable, hence dQ/dIP = ¢(R)

for some measurable ¢ : [—1,1] — IR. The family of such ¢ is characterized by

¢ >0,
/[1 : é(z)x dz =0, (2.2)

5 /[_1,1} o(z)dx = 1.

We only regard the ¢ which satisfy

—_

¢(x) = ¢(—x), = € [-1,1].

We shall construct a sequence ¢, satisfying (2.2) such that

1
lim E¢,(R)Is,(ry>n = lim = b ()14, (2)>ndz > 0.

n—00 n—oo 9 [~1,1]

Such a family is not uniformly integrable, hence the set of martingale measures (which
contains the above sequence) is not relatively compact in the topology o (L', L*®) (see [6]).

We define ¢,, as follows:

1 1 3n 1 1

T %)7 bn(z) == o1 *E€ [—1,1]\ (_R’ i

)-

On(z) :=mn, z € (

One can easily check that this sequence satisfies (2.2) and that

1
E¢n(R)I¢n(R)2n = Z

3 No arbitrage in each finite submarket does not suf-
fice for the existence of an absolutely continuous
martingale measure in the large market

We consider a one-period market model with countably many assets, whoses returns R’ :=
g; — b; 1 > 1. We suppose that the ¢; are independent and the support of their distribution

is [—M, M] for some M > i. We furthermore assume Fg; = 0 and Ee? = 1.



This is a fairly simple example of a large financial markets taken from [3]. It is still
unknown, however, what is the necessary and sufficient condition on the b; which guarantees

the existence of an equivalent martingale measure, i.e. () ~ IP such that
E°R' =0, i > 1.

Now we sketch an example where absence of arbitrage holds in each finite submarket,
however there is no martingale measure () << IP for the whole market.

We assert that if each b; lies in (=M, M) then (NA) holds (i.e. there is no arbitrage) on
finite submarkets. By Dalang-Morton-Willinger Theorem this is equivalent to the existence

of @), ~ IP for n € IN such that
E*R =0, 1<i<n.

By independence, it suffices to produce such a measure for a fixed asset. One can give a
direct construction of the density, we refer to [5].

If there is a martingale measure ) << IP for the whole market, since

are just the Fourier-coefficients of the function d@Q/dP € L' with respect to the uniformly

bounded orthonormed system ¢;, a theorem of Mercer applies (see p. 66 of [1]) and
b; = 0, 1 = 0.

Putting together our observations so far: if we set b; = 1/2, i € IN we have that there is

(NA), however no martingale measure ) << IP exists as

obviously fails.
It is possible to show in this case that there is a ”free lunch” (in fact, one can show in a
similar way that there is a free lunch ”of the second kind”, in the sense of [3]). We take a

porfolio ¢™ where ¢}, 1 < n represents the amount of asset 7z we have. We set

or = —1/n.



n

It is easy to check that the value V,, = =1 3" (g; — 1/2) of the portfolio ¢" converges to 1/2
almost surely, and V, remains bounded. =

If b; tends to 0 (slowly) then it is still possible to produce a free lunch in a certain sens,
but in this case we can not guarantee that the negative parts are bounded. We take

1
" 1+1ni

i

and portfolios ¢ := ——5. The central limit theorem shows that

n
> &

=1
n3/4

—0

n
in probability. The sum ) b; is of the same order as
i=1
n Inn pt
/ = - / dt.
1 lnx o t

t
)

We find that for ¢ large enough

SN

et
—>e
t

hence
n

> b

— 9 1
=1 ==
3/ > C+ ZTHO.

n
so the values V,, = —# Z(sZ — b;) tend to oo in probability.
i=1

4 L' theory is different from L theory for » > 1

We present a version of the dyadic model when the underlying probability space is 2 := (0, 1]
considered with its Borel field and the Lebesgue measure, called here IP. We suppose this

time that the ¢; are the Rademacher system, that is to say,

1 .
gi(z) = (=1, z¢€ (gk%] 0<k<2 1.

We remark that the e; are independent and identically distributed,

P(e; = +1) = P(e; = —1) = 1/2.



It is known that if —1 < b; < 1 then

o0
be < o0
i=1

is equivalent to the existence of a martingale measure ) ~ IP for the whole market (see
[4]). We now construct a sequence b; such that there is a martingale measure Q) ~ IP with

density in L'\ L" but

where r > 1.

We define
2nS n n—1
f(ﬂ?): 1+1’x6(1/271/2 ]7”217
n L
where
1
S = i:E 1 i1

This function satisfies £ f = 1 so we set

dQ/dIP := f.

On the other hand, f ¢ L" for r > 1:

. . oo 2n(r—1)
Eff=5 nzz:l o = 00.
We define b; by
bi = fSZ'.
(0,1]

First we remark that by the symmetric nature of the Rademacher system

So we get,

2i—1
el 1 S
=5 Z 1+ D



1 2].

. 12
since ¢; = —1 on (55, 57] and &; = +1 on U2, (57, 5

o0
The sum z T has the same the behaviour as
j=i+1J "

1
+1 gl t7 T

/oo de  (i+1)7r

We infer that

S S 1
bim——g+—=Cx
17 Tt ir

This implies
Z b, = oo
i=1

Y 1/i= oo.
i=1

We remark that we can even find b; for each ¢ > 0 such that

nevertheless there is a martingale measure (with density in L'\ L" for all 7 > 1).

5 Stationary markets

We fix a probability space (€2, F, IP). We consider a stationary process (X;);>1 with values
in IR. Its filtration is denoted by F;, t > 0. We introduce investment opportunities ®, such
that ®; is F;-adapted and has a finite number of nonzero terms (i.e. ®; = 0 if ¢t > T(®)).
Thus there exists a sequence of measurable functions (¢;):>0, where ¢o € IR and for ¢ > 1
¢; : IR — IR and

by = (X1, -0, Xp).

We will denote by Z the set of investments. We take this set as a cone convex of [2(L?)(F).
We define the operator T from [*(L?)(F) to [*(L?*)(F) by

T((D) = (O,SOO; 901(X2), s <Pt(X2, cee aXt+1)7 .- ) .



We assume that the set Z is stationary in the following sens :
T(Z)cCTI.

We are interested in the caracterisation of the no-arbitrage condition in this context.

We say that there is no arbitrage up to time N if
Ty N (1) = {0},

where

Iy ={®€Z: T(P) <N}

We can extend the single-ended stationary process to a doubled-end stationary process
(X;)iez such that (X;);>1 and (X;);>; have the same distribution, see [2] p 105 proposition
6.5. The filtration of the new process will be denoted by F;, ¢ € Z. We consider separators

H € I?(L?)(F) i.e. of the form
H = (h'O(XJa ] S O)ahl(Xja .7 S 1):)a

where h; : RN — IR measurable functions.

We define the following sets of separators:

Ky :={H € P(L*)(F) :< H,®><0, Y& € Iy, Ehy(X;, j <0) = 1}.
We define
K:={Hc*(I*,(F):< H®><0, V& € T, Ehy(X;, j <0) =1}.

We first remark that T’ can be extended to T acting on elements of I2(L?)(F).

T® = (0, wo(X;, 1< 1), 01(X;, § < 2),...).
Now we consider the adjoint of T :

T°H = (hi(X;, § < 0),ha(Xy, 5 <1),...).

We claim that K is invariant under the action

U(H):=T*H/Ehy(X;, j <0).

8



Indeed, we have for all ® € Z:
< U(H),® >=< H,T®/Eh,(X;, j <0) ><0,

because 7 is a cone invariant under the operator T, which coincides with T here. We also
notice that 7* and hence ¥ are weakly continuous.

We need the following assumption which we will discuss in detail later:
Assumption. The set K is weakly compact in I2(L?)(F).

Under this assumption the theorem of Tychonoff-Schauder provides a fixed point for W.

So we get H € I>(L?*)(F) satisfying

ahy(X;, 7 <t)=hu1(X;, 7<t); t>0. (5.3)

where a := Ehy (X, j <0). This entails

hii(+) = ahy(:)

almost surely ]P{ X;, j<t}> 5O by stationarity a.s. P{ X}, j<0}" This leads to
a'ho(-) = hy()

almost surely ]P{ X, j<0}"

So we obtain a stationary deflator process d; := atho(X;, j < t) in [2(L?)(F) such that
for each ® € 7
(@)
> Ed®, <0.

=0

Our main problem is to find conditions under which the above Assumption holds (maybe
using other Banach spaces than [?(L?)). Even if the processus X; has a finite state space,
we find no way to infer L?(F)-boundedness from L'(F)-boundedness since we extend the
single-ended process X, to a double-ended process X; whose norm is given by an infinite
sum.

We now give an example where we can show that the set in question is not compact.

The construction is in the same spirit as section 2.



Example. We take X; independent uniformly distributed on [—M, M]. We suppose the
existence of an interest rate, i.e. an investment (—1,1 + ). We also assume M > 1+ 7. In

addition, we have one more investment
(D = (1, _Xl)
We find that
T® = (0,1, —X5).

We look for separators H of a particular form:

- (1 h(X1) h(Xs) )

T (2

We look for h > 0 such that

We look for functions A, : [—M, M] — IR, of the form:

ho(z) = n, z€ (a,, M,
ho(z) = ¢p, = €[—M, )],
with
an::M—2(1+T), n::2M—n(M—a)'
n—1 oa+ M

We can easily check that for n sufficiently large ¢, is non-negative and h, fulfills the
conditions (5.4). One can conclude that

Ehn(Xl)I{hn(Xl)Z"} = 2(711%1)7%
As such a family is not uniformly integrable, the set K (which contains the above sequence)
is not relatively compact in the topology o(L*, L*) (see [6]).

We would like to know if the assumption holds true only for finite (2. We can relate this
problem of campactness to certain reflexivity properties. Notably, if we take Z C ¢*(L') and

Tt € 1°(L™®) then the question is the reflexivity of Z+ or (equivalently) (Z1)". The latter

can be identified with the quotient
ba/spanIa(ba’Loo).

10



Is it possible to find a reflexive quotient of a non-reflexive Banach space ?
There is another possible approach to this problem: considering a family of independent

identically distributed random variables X1, Xo, ..., taking investments of the form
® = (o, $1(X1), -, Sr(@) (X1, -, Xray)) -
Then stationarity assumption is that for all k € IN T*(Z) C Z, where
TH(®) = Tixi=y (0, 60, 61(Xa), -, Sr@) (Ko -, Xria1)) -
Then the adjoint is defined via
T*(H) = (hi(k), hao(k, X1),...)P(X1 = k).

The problem is to find a common fixed point to the family 7. If it is possible then we
find a deflator of the form
ca(Xy) ... a(Xy)

at time ¢.

6 Measures of density with minimal L?-norm

We take Bernoulli random variables ¢; and asset returns

R, :==¢; — b,
where —1 < b; < 1.
We are looking for the martingale measure @, for Ry, ..., R, such that
dQ
E(=32)2
(2)

is minimal. We have found that the minimal measure does not make the ¢; independent and

that the minimal value of the L? norm is of the order
n
>0

=1

in accordance with our intuition.

11



7 Can we associate to each sequence b; in /" a martin-

gale measure with density in L" ?

We consider a one-period market model with countably many assets, whoses returns R’ :=

g;—b; 1 > 1. We suppose that the ¢; are independent with ; € L". We furthermore assume

We investigate the following implication

> d )
> b <oo=3Q ~ P d—]% € L"such that @ is EMM. (7.5)
i=1

We define the mapping
U:L" > RN, ¢— (Ede;)ix1-

Our problem is equivalent to
U(BNLY) =1,
where B is the ball of unity in L.

Let us consider the case r = 2. The first idea is to consider
o0
i=1

¢ isin L?, E¢ = 1 and E¢e; = b;, the problem is that ¢ is not necessarily positive.

In the case where g; form a complete orthonormal system such that for each n the
support of (e1,...,&,) is IR". Such a system exists by results of M. Résonyi: Arbitrage
pricing theory and risk-neutral measures. For all not identically zero sequences b; there
exists a real constant A such that for \b; there is no d@)/dIP satisfying (7.5). Let us suppose
indirectly that for all A there is f* € B N L? such that its Fourier-coefficients are \b;. By
completeness of the system, we have that

00
=1+ Z Ab;e;,
i=1

where the sum converges in L?. We define
o
g = Z bzéfz
i=1

12



If the b; are not identically 0 then g # 0, for example P(g < 0) > 0, we have that for A
large enough 1 + g is negative with positive probability, a contradiction with the fact that
the f* are densities. The condition of the support of (1,...,&,) guarantees that, however,
there are martingale measures for finite submarkets, even if A is huge.

Looking at the mapping ¥ one naturally asks the question: how is it possible that the
image of BN Li under the linear operator W is the whole space ¢ 7 For this it is necessary
("en gros”) that the eigenvalues tend to infinity. We looked at finite dimensional examples,
how ”in the limit” linear images of cones may become subspaces.

Another related idea: assume that span{e; — b;}* N L7 = {0}. By a separation theorem
we get f; such that f; € span{e; — b;}*+, and f; > 0. The biorthogonal is just the span
of {&; — b}, so there exists A € IR such that f; = A(e; — b;) which contradicts the fact
P(g; —b; > 0), P(g; — b; <0) > 0.

One deduces that there exists ¢; > 0, ¢; # 0 such that E¢;(e; — b;) = 0. To construct a

probability measure for the whole market we have to consider the convergence of
ﬁ i
=1 B
There is no reason that this product should converge so we should add a normalization
condition on the set span{e; — b;}* in order to obtain some condition on each ¢;.

An other idea is to consider span{e; — b;, 1 € IN}*, but then the separation argument is

not sufficient to obtain a contradiction, we also have to assume a no free lunch condition.
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