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Abstract: Pairwise comparison (PC) matrices are used in multi-attribute decision problems 
(MADM) in order to express the preferences of the decision maker. Our research focused on 
testing various characteristics of PC matrices. In a controlled experiment with university students 
(N = 227) we have obtained 454 PC matrices. The cases have been divided into 18 subgroups 
according to the key factors to be analyzed. Our team conducted experiments with matrices of 
different size given from different types of MADM problems. Additionally, the matrix elements 
have been obtained by different questioning procedures differing in the order of the questions. 
Results are organized to answer five research questions. Three of them are directly connected to 
the inconsistency of a PC matrix. Various types of inconsistency indices have been applied. We 
have found that the type of the problem and the size of the matrix had impact on the inconsistency 
of the PC matrix. However, we have not found any impact of the questioning order. Incomplete 
PC matrices played an important role in our research. The decision makers behavioral consistency 
was as well analyzed in case of incomplete matrices using indicators measuring the deviation from 
the final order of alternatives and from the final score vector.   

 

Keywords: multi-attribute decision making;  experimental techniques in decision 
making; pairwise comparisons; inconsistency; incomplete pairwise comparison 
matrix  
 
 

1 Introduction 

 
In additive models of multi-attribute decision making it is assumed that 
alternatives can be evaluated criterion-wise, and their weighted sum – where 
weights represent the importance of the criteria –, yields an appropriate numerical 
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assessment of the overall performance of the alternatives. Total scores of the 
alternatives help the decision maker to choose the best one, or to rank them. That 
approach includes two tasks: to compute attributes’ weights and evaluate each 
alternative with respect to each criterion. First, we need to express the importance 
of attributes by numbers based on decision maker’s preferences (weights). 
Second, alternatives need to be evaluated numerically with respect to each 
criterion (preferences, scores). Pairwise comparison matrices are applied in both 
tasks. In this article we will use the terminology of the second task, that is, having 
a criterion fixed, the aim is to evaluate the alternatives.  
 
Let v1, v2,…, vn > 0 denote the scores of the alternatives according to a given 
criterion. vi-s are also called preference values and their sum is usually normalized 
to 1. Value of vi (i = 1,2,…,n) is usually not known explicitly, but we assume that 
the decision maker is able to approximate the ratios vi/vj by answering a question 
like ‘How many times alternative i is better than (preferred to) alternative j 
according to the given criterion?’ Having the answers for all pairs an n×n matrix 
can be built. Matrix T = [tij]  contains the revealed ratios and it is called pairwise 
comparison (PC) matrix and tij is the approximation of vi/vj for all i,j. T is a 
positive reciprocal matrix, where the diagonal elements are equal to 1 (tij > 0 and 
tij = 1/tji, for all i, j = 1,…, n). The reciprocal property can be ensured if the 
decision maker gives only one of the ratios from the pairs (tij, tji) and the other one 
will be calculated using the reciprocity rule.  
 
Considering a perfect (or informed) decision maker, who can precisely estimate 
the unknown ratios – which case is very exceptional – T is a consistent matrix: 
tik*tkj = tij, for all i, j, k = 1,…,n (chain rule). For most real problems, however, T 
is not consistent and its inconsistency is accounted for the behavior of the decision 
maker (Choo and Wedley, 2004; Temesi, 2011). A consistent matrix has rank one, 
and it is generated by any of its columns (Saaty, 1980). In this case the normalized 
(sum equals to 1) values of vi (i = 1,…,n), can be calculated from any column of 
matrix T by vi = tij / sum(tkj, k = 1,2,..,n), where 1 ≤ j ≤ n  is an arbitrary integer.  
 
If T is not consistent and values tij are considered as the approximation of the 
ratios vi/vj, then several estimation methods can solve the problem. If the ratios are 
given applying a 1,..,9 ratio scale and the eigenvalue method is used for the 
estimation of the values vi, we arrive at a special case: Saaty’s Analytic Hierarchy 
Process – AHP (Saaty, 2005). This paper neither deals with the characteristics of 
the estimation methods, nor will be AHP in the forefront of the discussion. 
Instead, our research focuses on the properties of the PC matrix in the process of 
generating the elements of the PC matrix. 
 
Elicitation of the elements of the PC matrix is implemented by a questioning 
procedure, in which the decision maker answers the pairwise comparison 
questions one by one. If matrix T is not consistent then the biases in the 
comparisons can be classified into different types reflecting on the potential 
sources of the deviation from the consistent case. Real-world applications rarely 
describe how the elements of the PC matrix have been generated, and do not 
analyze the reasons of inconsistency, and the choice of a particular consistency 
improving method. One of the aims of our research was to explore the 
characteristics of empirical PC matrices and their relationship to inconsistency. 
 



Incomplete pairwise comparison matrices are also in the focus of our interest. The 
estimation method could use an incomplete PC matrix, for instance, if the 
questioning process was interrupted or elements are missing from a complete PC 
matrix without a possibility to replace them. Several studies dealt with incomplete 
PC matrices from different aspects (Harker, 1987; Bozóki, Fülöp and Rónyai, 
2010). Optimal completion of these matrices and inconsistency calculations using 
incomplete PC matrices are especially relevant for our discussion. An important 
research question is if incomplete PC matrices could be used for reducing the 
number of pairwise comparisons. 
 
This paper presents results of an experiment on PC matrices conducted to 
investigate the characteristics of empirical PC matrices. Although previous 
research has shown the need for a large number of well-documented matrices 
obtained from a controlled environment, only a few studies have been analyzed 
empirical PC matrices. Gass and Standard (2002), for instance, highlighted 
important differences between randomly generated and experimental matrices. 
Poesz (2008) collected PC matrices from reported real-world applications to 
analyze their characteristics and drew conclusions about their inconsistency 
levels. Linares (2009) investigated the inconsistency of experimental pairwise 
comparison matrices. 
 
The main goal of our research was to analyze the properties of PC matrices with 
the help of a database which was derived from our experiments. Prior to designing 
and running the experiments five research questions were formulated. At first, we 
describe the experiment, then present the results. This will be followed by 
drawing conclusions and proposing directions for further research. 
 

2 The experiment 

 
The experiment was conducted in 2010 at Corvinus University of Budapest, 
Hungary. 227 undergraduate and graduate students participated in the 
experiments. Subjects were 3rd year Bachelor and 1st year Master students of 
business and economics majors. The mean age was 22, where a low standard 
deviation reflected having students as subjects. 39% of the subjects were males, 
and 61% were females. This skewed gender distribution is consistent with the 
gender distribution of the students at Corvinus University. 
 
The experiments were conducted in class as previously arranged with the 
professors. One session lasted approximately 25 minutes. First, the professor 
introduced the experimenters to the students, and he announced that participation 
is voluntary and could be discontinued at any time. Note, that no student refused 
participation in any of the sessions. 
 
Participants received the experimental material in a stapled leaflet with a unique 
identification number. Each page of the leaflet displayed one comparison, thus 
each comparison was displayed on a separate page; subjects were not allowed to 
turn back pages. The first page was a practice task, after which students were 
encouraged to ask (if any) questions. When they finished working they were 
asked to wait until everyone was done. Each session was closed with debriefing.  



 
In each session the experiment consisted of two subsequent tasks that were 
designed to test our hypotheses. The design of the test problems and the 
experimental setting captured the following four dimensions for future analysis:  

 type of the problem, 
 size of the PC matrix, 
 questioning order, 
 completeness. 

 
In order to investigate the impact of the type (nature) of the problem the quality of 
the applied stimuli was categorized into “subjective” and “objective” groups. For 
the objective stimuli, our subjects were asked to compare countries by their size. 
First, subjects had to indicate from a presented pair of countries which country is 
larger. Then, they had to indicate by how much it is larger on a numerical scale. 
Thus, if one country was judged 30% larger than the other one, it was indicated to 
be 1.3 times larger. For the subjective stimuli subjects had to compare summer 
houses. At first they were asked to reveal which summer house they liked more. 
Then they indicated how much more they liked the preferred house on a 
numerical scale. For this latter they were as well given a Saaty-scale (Saaty, 
1980). Thus, each comparison consisted of a dichotomous, verbal comparison and 
a subsequent estimation on a numerical scale. Note, that Bozóki and Rapcsák 
(2008) showed that using Saaty’s inconsistency index it is irrelevant if either 
discrete or continuous scales was used. 
 
Every subject was presented with one subjective (summer houses task) and one 
objective (country maps task) set of stimuli and the order of the presentation (that 
is whether subjective stimuli was given first or second) was randomly assigned to 
each subject. The countries and the summer houses were projected on the screen, 
which is a usual classroom practice. Note, that we used an imaginary map with 
irregular contours of the countries. 
 
The second factor administered in the experiments was the size of the matrices. 
We applied three sets of matrices with the size 4×4, 6×6 and 8×8. Note, that in 
one session only one size was applied. 
 
When the elements of the PC matrix are determined one by one, we refer to this as 
a questioning procedure. The third factor was the impact of three different 
questioning procedures differing in the order of the questions. In the first 
procedure subjects compared the summer houses and the countries in a sequential 
order. Country A, for instance, was first compared to country B, then country A 
was compared to country C, etc. In the second procedure the subjects compared 
the summer houses and the countries in a random order. For the third procedure 
we applied the order proposed by Ross (Ross, 1934). This procedure satisfies two 
conditions of an optimally balanced comparison. On one hand, it maximizes the 
distances for the same items to reappear. On the other hand, for every item the 
number of the first and the second positions in the comparison should be the 
closest possible. In contrast to sequential order, where, e.g., country A appears in 
each of the first five questions and it is always in the first position, Ross order 
balances both the frequency of reappearing and the first/second positions as much 
as possible. Table 1 presents examples of filling out 6×6 matrices in each of the 
detailed questioning orders. 



 

Table 1 A completed 66 matrix applying the three questioning orders 
 

question 
 

 order  

 
1. 

 
2. 

 
3. 

 
4. 

 
5. 

 
6. 

 
7. 

 
8. 

 
9. 

 
10. 

 
11. 

 
12. 

 
13. 

 
14. 

 
15. 

sequential A-B A-C A-D A-E A-F B-C B-D B-E B-F C-D C-E C-F D-E D-F E-F 
random A-F B-E A-C F-E C-D B-D B-F A-E C-E A-D E-D C-F B-C A-D B-A 
Ross A-B F-D E-A C-B E-F A-C B-D F-A D-C E-B A-D C-E B-F D-E C-F 

 
The experiment was a 2(types)3(sizes)3(questioning orders) factorial design 
determined by the three factors described above. There were 9 sessions run all 
together, with 25 participants on average in each session. Every subject received a 
set of objective and subjective type of stimuli. Thus, we ended up having a total 
number of 454 complete PC matrices (see Table 2 for details). 
 
Table 2 The number of subjects participated in separate experiments  
 

objective subjective total 
experiment type

 
number of alternatives 230 224 454 

4 68 69 137 
6 80 77 157 
8 82 78 160 

questioning order    
sequential 75 75 150 
random 77 74 151 

Ross 78 75 153 

 
When we checked the data we have found that some answer sheets contained 
either missing or obviously incorrect comparisons, therefore the final number of 
comparisons in our analysis were less, altogether from 445 datasheets. 
  
Furthermore, the experimental design allowed us to trace and to analyze the 
properties of incomplete PC matrices. We have recorded every stage of 
completing the PC matrices in the course of a given questioning order. This way 
we have obtained a pool of incomplete matrices, which allowed us to investigate 
the characteristics of the incomplete matrices.  
 
 

3 Results 

3.1 Consistency analysis 

 
The low level of inconsistency of a PC matrix is a necessary condition to obtain 
the right results when scores, weights, or preferences are obtained from the PC 
matrix. Using the definition of the consistent PC matrix several inconsistency 
indices can be developed. 
 
The well-known Saaty index (CR – consistency ratio, Saaty, 1980) is based on the 
fact that the dominant eigenvalue of a consistent PC matrix is n. In general, CR is 
a positive linear transformation of the Perron eigenvalue λmax as follows: CR = 
(λmax – n)/(RIn*(n – 1)), where RIn is defined as (Λmax – n)/(n – 1), where Λmax is 



an average value of the Perron eigenvalues of randomly generated n×n PC 
matrices. CR is zero if and only if the PC matrix is consistent, otherwise CR is 
positive. CR is widely used and a threshold value of 0.1 (10%) has been accepted 
in the practice. However, the concept of the CR is being heavily debated (Murphy, 
1993; Bana e Costa and Vansnick, 2008). One of the drawbacks of the index 
arises from its construction: having RIn in the formula CR could not be 
investigated and interpreted analytically. It has been computationally verified that 
RIn depends not only on n, but as well as on the maximal value of the ratio scale, 
however, it is ultimately irrelevant whether the ratio scale is discrete or 
continuous (Bozóki and Rapcsák, 2008). 
 
Yet another inconsistency index, based on the properties of 3×3 consistent PC 
matrices was developed by Koczkodaj (1993). The 3×3 size PC matrix, called 
triad, can be written as follows: 
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Furthermore, the extension of CM for higher dimensions (Bozóki and Rapcsák, 
2008) can be written for an n×n  PC matrix A by using the maximum function 
over the set of the triads as 

 .nkji1)a,a,a(CMmax)A(CM jkikij    

One of the advantages of CM is that it localizes the ‘worst’ triad in the PC matrix, 
an appropriate reconsideration of which (if it is possible) decreases the level of 
inconsistency of the whole PC matrix. It has also been shown that CR and CM are 
equivalent for 3×3 PC matrices due to a function-like relation of the two indices 
(Bozóki and Rapcsák, 2008). However, for larger sizes this relation is not one-to-
one. CM always ranges from 0 (in case of consistency) to 1; however, 
intermediate values are not translated into categories. One of the particular 
disadvantages of CM is that – up to this point – the threshold for acceptance has 
yet neither been defined nor validated.   
 
Several other inconsistency indices have also been developed (find a detailed list 
of inconsistency indices by Brunelli and Fedrizzi (2011). Gass and Rapcsák 
(2004) developed for instance an inconsistency measure, which is based on 
singular value decomposition. To represent the two different approaches we used 
the Saaty index (CR) and the Koczkodaj index (CM) in our analysis. 
 
The first research question focused on the magnitude of inconsistency regarding 
different types of the decision problems: Does subjective stimuli yields higher 
inconsistency level than objective stimuli? We predicted that CR indices will be 
higher for subjective stimuli (i.e., summer houses task) than for objective stimuli 
(i.e., maps task). 



 
We computed CR and CM inconsistency indices for all obtained complete PC 
matrices. Table 3 presents the CR averages and Table 4 shows the CM averages 
for all of the matrices, where the discriminating factor was the type of the 
problem. In both tables a single cell represents the average of 22-27 matrices.  
 
As it can be seen from Table 3 average CR indices are close to 10% for summer 
houses task (with the highest value of 13.31% for the 8×8 matrices) while they 
range around 1% for the maps tasks.  
 

Table 3 The average of CR indices (in %) for complete matrices 
 

 CR (in %) 

summer houses maps size

order  4x4 6x6 8x8 4x4 6x6 8x8 

sequential 8.10 10.75 12.46 0.67 0.81 1.28 
random 10.38 9.47 11.96 0.78 0.80 1.07 
Ross 8.75 10.63 13.31 0.70 0.88 1.73 

total 9.06 10.28 12.58 0.72 0.83 1.36 

 
As we predicted we found that CR indices (disregarding order and size) are higher 
for summer houses than for maps, Mann-Whitney U Test = 2285.00, p ≤ .001. 
 
From the same table one can see that for the summer houses the decision makers 
were close to Saaty’s 10% acceptance rule for each size and for each questioning 
order. This high level of inconsistency was also found for the individual cases, as 
it can be seen in Figure 1.  
 
Figure 1 visualizes the individual CR values for complete 4×4, 6×6 and 8×8 
matrices and the CR values for the same matrices with one missing element. This 
figure also exemplifies the dynamics of the CR values of incomplete PC matrices 
using elementary data. Projecting the two-dimensional data to one of the axis 
highlights the distribution of the individual CR values.  
 



Figure1 Individual CR values (in %) 
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This figure denotes the individual CR values with circles for summer houses (top 
row) and for maps (bottom row) for matrices with different sizes (columns). Both 
axes present the CR values from 0% to 40%: the horizontal axis for the complete 
matrices, the vertical axis for those incomplete matrices with one missing element 
(the last one in the questioning order). At this point we focus on mapping of the 
individual indices to the horizontal axis, i.e. on CR values of the complete 
matrices. (Note, that later in the paper this figure will help us demonstrating some 
properties of the incomplete matrices.) The figure shows that the CR values of the 
objective type are concentrated in the proximity of 0. 
 
Furthermore, Table 4 presents the average CM indices for the same matrices. The 
CM values are consistent with the tendencies obtained from Table 3. 
Interpretation of the magnitude of the CM values and their order can be 
interpreted similarly to the CR indices, but we have to note that CM threshold for 
acceptance has only been defined for a very special case (Koczkodaj, Herman and 
Orlowski, 1997).  
 

Table 4 The average of CM indices for complete matrices 
 

 CM  

summer houses maps size

order  4x4 6x6 8x8 4x4 6x6 8x8 

sequential 0.62 0.79 0.87 0.29 0.45 0.54 

random 0.68 0.77 0.86 0.31 0.45 0.57 

Ross 0.60 0.82 0.90 0.28 0.45 0.58 

total 0.63 0.79 0.88 0.29 0.45 0.56 

 
In the literature on MADM methodology most scholars and practitioners agree 
there is a decrease in the decision maker’s consistency as the size of the matrix 



increases. Some researchers follow the rule of “magical number seven” (Miller, 
1956; Saaty 2003) suggesting that matrices larger than 7×7 inherently lead to 
inconsistency, since the great number of questions imposes an overwhelming 
cognitive load on the decision maker: an 8×8 size matrix, for instance, includes 28 
comparisons. One might argue that focusing on a single pair at a time should not 
necessarily lead to increased inconsistency; but in the end, increasing the matrix 
size by just one substantially increases the number of comparisons, making the 
entire process longer and more tiresome, possibly leading to diminished 
performance. These considerations led us to another research question: Does 
increased size predict higher inconsistency level? 
 
In Table 3 we earlier showed that an increase in size is associated with an increase 
in CR index, and Table 4 also showed similar pattern for CM index. Regressing 
the logarithm of CR index on type, order, size and the type×size interaction, we 
see that the summer house task has a higher mean CR index than the map task, 
and that increasing matrix sizes lead to the same linear increase in CR index for 
both tasks (see parameter estimates for this regression in Table 5). Results of the 
regression of the logarithm of CM index on the same predictors are similar, with 
the exception that the type×size interaction is significant. So although both tasks 
exhibit increasing CM indices with larger matrices, the increase in the summer 
house task (which again has a higher intercept than the map task) is less severe 
(See Table 6 for parameter estimates). 
 

Table 5 Parameter estimates for linear regression of log_CR index  
 

 Estimate Std error Wald chi-sq (df) p-value 

type     

   map 0 N/A N/A .N/A 

    summer house 2.34 .32 53.13  (1) .00 

order     

    random 0 N/A N/A N/A 

    sequential -.02 .10 .05  (1) .83 

    Ross .04 .10 .15  (1) .70 

size .15 .04 16.51  (1) .00 

summer house×size .00 .05 .00  (1) .95 

Overall likelihood ratio chi-sq(5 ) = 477.01, p-value < 0.001 
 

Table 6 Parameter estimates for linear regression of log_CM index  
 

 Estimate Std error Wald chi-sq  (df) p-value 

type     

    map 0 N/A N/A N/A 

    summer house 1.06 .11 85.09  (1) .00 

order     

    random 0 N/A N/A N/A 

    sequential -.01 .04 .03  (1) .86 

    Ross .01 .04 .04  (1) .84 

size .16 .01 162.63  (1) .00 

summer house×size -.07 .02 16.51  (1) .00 

Overall likelihood ratio chi-sq(5) = 392.66, p-value < 0.001 
 



Based on the analyses we have two propositions answering our two research 
questions. 
 
Proposition 1: The level of inconsistency for the subjective tasks will be 
systematically greater than for the objective tasks. 
 
Proposition 2: Inconsistency increases as the size of the PC matrix increases. 
 
All in all, our findings reinforce what has already been identified and reported in 
the literature that inconsistency increases as the size of the matrix increases. 
Additionally, we found that increasing size results in greater inconsistency for 
subjective type of task than for objective type of task.  
 
Although one of the novelties of our research was to test whether there are any 
differences in the consistency elicited by the different questioning orders, we have 
not investigated yet the impact of the questioning order: Does the questioning 
order influence inconsistency?  
 
We conjectured that one of the questioning orders (e.g. the sequential method) 
might lead to lower inconsistency than the others. However, data presented in 
Table 3 and in Table 4 do not support our intuition: Table 5 and Table 6 further 
confirm that the questioning order does not have predictive power.  
 
Proposition 3: The questioning order does not influence inconsistency. 
 

3.2 Analyzing the incomplete matrices 

 
In the further analysis we will use the generalization of PC matrix to the 
incomplete case. Incomplete matrices give an insight to the process of eliciting the 
elements of the complete PC matrix. 
 
According to Harker (1987) an incomplete PC matrix contains one or more 
missing elements. Note that every (complete) PC matrix is built up through the 
series of incomplete PC matrices in the following fashion: whenever the decision 
maker enters a matrix element there will be one less missing element and this 
continues until the PC matrix has no missing values, i.e., becomes complete. CM 
inconsistency index, the Eigenvector Method and the CR inconsistency index 
have been extended to incomplete PC matrices (Bozóki, Fülöp and Koczkodaj, 
2011; Bozóki, Fülöp and Rónyai, 2010) respectively. We used algorithms 
introduced by these two papers. 
 
Let A be an incomplete pairwise comparison matrix where the missing (i.e., 
unknown) elements are denoted by *. 
 

 1 a12 * . . a1n 

 1/a12 1 a23 . . * 

A =   * 1/a23 1 . . a3n 

 : : :  : 

 1/a1n * 1/a3n . .  1 



 
Let x1, x2 ,…, xd > 0 denote the missing elements in the upper triangular part of A, 
and their reciprocals, 1/x1, 1/x2, …, 1/xd are written in the lower triangular part of 
A. Known elements are denoted by aij as usual, except for the positions where 
entries are missing. A(x1, x2 ,…, xd) is a complete pairwise comparison matrix for 
any values of (x1, x2 ,…, xd). The total number of missing elements in matrix A is 
2d. 
 

 1 a12 x1 . . a1n 

 1/a12 1 a23 . . xd 

 A(x1, x2 ,…, xd) =   1/x1 1/a23 1 . . a3n 

 : : :  : 

 1/a1n 1/xd 1/a3n . .  1 

 
Based on the correspondence between the CR inconsistency and λ max of a pairwise 
comparison matrix, the generalization of the Eigenvector Method for the 
incomplete case is originated from the optimal solution of the eigenvalue 
minimization problem as follows: 
 

λ* max = min { λ max (A(x1, x2 ,…, xd)) | x1, x2 ,…, xd > 0 }. 
 

Now CR can be extended for the incomplete case by using the same definition as 
in section 3.1:  

CR(A) =  (λ*max – n)/(RIn*(n – 1)). 
 

Analogously, the extension of CM for the incomplete case is 
 

CM(A) = min { CM(A(x1, x2 ,…, xd)) | x1, x2 ,…, xd > 0 }. 
 
Since we recorded every entry that the decision makers made, it is possible to 
track and analyze the change (if any) in the behavioral consistency of the decision 
maker. Thus, we can measure/index the inconsistency throughout the procedure 
and locate the inconsistency. Table 7 and Table 8 present results of such an 
analysis. The “number of matrix elements” represents the (ordinal) answer 
number in the sequence. For a 6×6 matrix this range is from 5 to n(n – 1)/2 = 15. 
The average CR inconsistencies were computed for each stage in the sequence 
broken down by questioning order. Our research question now: Is the behavior of 
the decision maker consistent in the course of the entire questioning procedure? 
 

Table 7 The average of CR inconsistencies (in %) for 6×6 incomplete matrices: summer houses 
 

number of matrix  
elements 

order 
5 6 7 8 9 10 11 12 13 14 15 

sequential 0 0.96 1.82 3.71 4.74 5.66 6.61 7.33 8.35 9.21 10.75

random 0 1.38 2.77 3.49 4.42 4.97 6.25 6.91 8.17 8.19 9.47 

Ross 0 1.37 2.50 3.84 4.93 5.45 6.27 7.24 7.85 9.52 10.63

 



Table 8 The average of CR inconsistencies (in %) for 6×6 incomplete matrices: maps 
 

number of matrix  
elements 

order 
5 6 7 8 9 10 11 12 13 14 15 

sequential 0 0.13 0.18 0.25 0.32 0.40 0.48 0.55 0.64 0.72 0.81 

random 0 0.06 0.11 0.20 0.40 0.50 0.57 0.65 0.71 0.72 0.80 

Ross 0 0.07 0.14 0.23 0.31 0.37 0.51 0.69 0.73 0.83 0.88 

 
Table 7 and Table 8 suggest that from 0 to the final CR value the averages for 
both types show an almost linear increase as the sequence progresses. To examine 
the consistency of the CR index during completion, we performed a mixed-effects 
linear regression of partial CR index on the fixed terms shown in Table 9, and also 
random, per-subject slope and intercept terms, to account for the correlations 
within each subject’s responses and model natural variation between subjects. A 
likelihood ratio chi-squared test of the significance of the random effects shows 
them to be significant (chi-squared(3) = 2895; p-value < .001). Table 9 shows that 
as subjects progress through the sequence, the CR index does increase linearly 
(visual inspection of the data hinted at a possible quadratic component, but this 
was not statistically significant). This positive association between sequence 
number and partial CR index is even greater in the summer house task, but it is 
somewhat dampened by sequential ordering or as matrix dimension increases. We 
can also see that random ordering gave greater partial CR indices in the map task, 
but this order effect was largely absent in the summer house task. And, as 
expected, larger matrices lead to higher partial CR indices – but, as above, this 
effect is less for the summer house task. 
 

Table 9 Parameter estimates for mixed effect linear regression of partial CR index 
 

 Estimate Std error t-value  (df) p-value 

sequence number .02 .00 10.23  (5463) .00 

sequence number squared 0.00 0.00 .32  (5463) .75 

type     

      map 0 N/A N/A N/A 

      summer house  .07 .00 15.63  (5463) .00 

order     

    random 0 N/A N/A N/A 

    sequential -.001 .00 -2.71  (5463) .01 

    Ross -.01 .00 -5.12  (5463) .00 

size .01 .00 7.04  (5463) .00 

sequence number×type:summer house .001 .00 39.74  (5463) .00 

sequence number×order:Ross .00 .00 .86  (5463) .40 

sequence number×order:sequential -.00 .00 -2.77  (5463) .01 

type:summer house×order:Ross .02 .00 7.08  (5463) .00 

type:summer house×order:sequential .00 .00 3.50  (5463) .00 

sequence number×dimension -.00 .00 -8.66  (5463) .00 

type:summer house×size -.02 .00 -20.51  (5463) .00 

Overall likelihood ratio chi-sq test for the significance of the random effects gave chi-sq(3) =  
= 2895, p-value < 0.001 
 



To gain further visual insight Figure 2 presents individual behavioral 
inconsistency by showing individual CR values for the random questioning order. 
All polylines in the figure denote one subject in the group. If we draw a vertical 
line at every step (from 5 to 15) we see the individual values of the CR 
inconsistency after having answered that number of questions. Since there were 
26 subjects in this session 26 polylines can be seen in the figure representing all of 
their answers. This figure gives details what lies behind the averages represented 
in the second row of Table 3. 
 
Due to the limited space we could not publish all tables and figures in our analysis 
of incomplete matrices. Calculations for other matrix sizes than in Table 7 and 
Table 8, and figures similar to Figure 2 can be seen on our webpage. (Find it on: 
http://www.sztaki.mta.hu/~bozoki/BozokiDezsoPoeszTemesi2013). 
 
Figure 2 The individual CR inconsistencies for 6×6 matrices, random questioning order 
 

 
Yet another way to test the behavioral inconsistency is to trace the score vectors 
and the corresponding ordering as completion progresses (i.e. using the 
subsequent incomplete matrices).  
 
First we calculated the score vectors for each level of completion in the sequence 
and compared them to the final score vector calculated from the corresponding 
complete PC matrix. Two principles were applied for the comparison of two 
vectors: cardinal and ordinal. Cardinal view (Table 10 and Table 11) treats score 
vectors as elements of the n dimensional Euclidean space, where closeness or 
similarity of two vectors can be measured by, e.g., Euclidean distance. Ordinal 
view (Table 12 and Table 13) takes only ranks into consideration. 
 
The averages (and our detailed calculations for each subject as it can be checked 
on our referred webpage) confirmed that the distance of step by step scores from 
the final score monotonically decreased in each step with a very few exceptions. 
Table 10 and Table 11 include the averages of the Euclidean distance of the score 
vectors calculated by the Eigenvector Method from the 8×8 complete and 
incomplete matrices in case of both tasks broken down by questioning order. 

      

http://www.sztaki.mta.hu/%7Ebozoki/BozokiDezsoPoeszTemesi2013


Table 10 Euclidean distance from the final scores for 8×8 incomplete matrices: summer houses 
 

number of matrix 
 elements 

order 
7 8 9 10 11 12 13 14 15 16 17 

sequential 0.17 0.16 0.16 0.15 0.13 0.12 0.11 0.10 0.09 0.08 0.06 

random 0.22 0.22 0.20 0.20 0.18 0.17 0.13 0.11 0.10 0.10 0.09 

Ross 0.23 0.20 0.16 0.15 0.13 0.13 0.12 0.11 0.10 0.09 0.08 

 
  

number of matrix 
 elements 

order 
18 19 20 21 22 23 24 25 26 27 28 

sequential 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.01 0.00 

random 0.08 0.08 0.06 0.06 0.05 0.05 0.05 0.03 0.03 0.02 0.00 

Ross 0.07 0.07 0.06 0.05 0.05 0.04 0.03 0.03 0.02 0.02 0.00 

 

Table 11 Euclidean distance from the final scores for 8×8 incomplete matrices: maps 
 

number of matrix 
 elements 

order 
7 8 9 10 11 12 13 14 15 16 17 

sequential 0.054 0.054 0.047 0.044 0.043 0.040 0.039 0.035 0.033 0.031 0.030

random 0.059 0.062 0.057 0.048 0.045 0.046 0.044 0.035 0.033 0.032 0.029

Ross 0.091 0.081 0.053 0.048 0.042 0.033 0.032 0.030 0.028 0.026 0.025

 
 

number of matrix 
 elements 

order 
18 19 20 21 22 23 24 25 26 27 28 

sequential 0.029 0.021 0.015 0.015 0.010 0.010 0.007 0.006 0.003 0.003 0.000

random 0.028 0.023 0.020 0.017 0.015 0.010 0.010 0.008 0.008 0.006 0.000

Ross 0.024 0.021 0.017 0.016 0.015 0.014 0.011 0.009 0.009 0.005 0.000

 
Again these tables show a robust impact of the problem type. Nevertheless, it 
seems that the questioning order does not have an impact, although one may point 
out that most of the maximum distance values are found in the rows of the random 
method. Our conclusion can be summarized in the next statement. 
 
Proposition 4: Throughout the pairwise comparison procedure the majority of the 
decision makers display a quasi-consistent behavior. 
 
As a next step we calculated the resulted order of alternatives in each step for each 
subject and for every task, and correlated these values with the final order. Table 
12 summarizes the Spearman coefficients for the 6×6 matrices. The coefficient 
gives +1 if the ranks are identical, and gives –1 if they are totally reversed. 

 

Table 12 Spearman rank correlation coefficients for 6×6 incomplete matrices 
 

number of matrix 
 elements 

type 
5 6 7 8 9 10 11 12 13 14 15 

summer houses 0.82 0.88 0.90 0.92 0.93 0.94 0.96 0.97 0.97 0.98 1.00 

maps 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 



The high coefficients indicate that the orders are very close to the final orders for 
the map problem from the very initial steps. When we looked at the individual 
charts which have been generated from our database, we found, indeed, that only 
a very few of the 26 subjects had a different ordering compared to the final one.  
 
The correlations reported in Table 12 gave us an overall insight about the 
similarity of orders. (More individual charts and rank correlation tables can be 
found on the webpage referred on page 13). Now, we can ask that in a particular 
questioning process according to the final order how many matrix elements are on 
the right place after a certain number of pairwise comparisons are completed. Our 
next research question is: Can we reduce the number of pairwise comparisons 
estimating the preferences if they are calculated from incomplete data? 
 
The cells of the 6×6 matrices in Table 13 contain the proportion of those matrix 
elements which are on the proper place according to the final order. Four matrices 
were calculated: after 10 and 14 pairwise comparisons for both types of problems. 
 

Table 13 Position of the elements of 6×6 complete PC matrices after 10 and 14 comparisons in % 
 
 Number of comparisons: 10  Number of comparisons: 14 

 1 2 3 4 5 6  1 2 3 4 5 6 

1 99 1 0 0 0 0 1 100 0 0 0 0 0 
2 1 99 0 0 0 0 2 0 100 0 0 0 0 
3 0 0 99 1 0 0 3 0 0 100 0 0 0 
4 0 0 1 99 0 0 4 0 0 0 100 0 0 
5 0 0 0 0 99 1 5 0 0 0 0 100 0 
6 0 0 0 0 1 99 6 0 0 0 0 0 100 
 a) map b) map 

 
 
 

      

 Number of comparisons: 10  Number of comparisons: 14 

 1 2 3 4 5 6  1 2 3 4 5 6 

1 83 16 0 1 0 0 1 92 7 1 0 0 0 
2 15 65 18 1 0 1 2 7 84 8 0 0 1 
3 1 17 73 9 0 0 3 1 9 90 0 0 0 
4 0 2 8 81 8 1 4 0 0 1 98 1 0 
5 1 0 1 8 73 17 5 0 0 0 2 95 3 
6 0 0 0 0 19 81 6 0 0 0 0 4 96 

 c) summer house  d) summer house 

 
Consider a 6×6 incomplete matrix of a map task after 10 comparisons. The 
elements of the first row of Table 13a show that 99% of the alternatives which 
should be on the first place (according to the known final order) are in fact on the 
first place after completing 10 pairwise comparisons, and only 1% is on the 
second place. From the second row we can see that 99% of the alternatives which 
should be on the second place are in fact in this position after 10 questions, again. 
The interpretation of Table 13c is similar: e.g., we can see from the first row that 
83% of the alternatives which should be on the first place are in fact on the first 
place after completing 10 comparisons, 16% are on the second and 1% is on the 
fourth place.  We can draw the conclusion that for the summer houses task the fit 
after 10 pairwise comparisons is not as good as for the map tasks. After 14 
comparisons (only the last comparison is missing in Table 13b and 13d) both 



tables demonstrate a good fit. Note, that the fitness for the map task is perfect, 
while the summer houses tasks need the last comparison much more. Tables of 
different matrix sizes and various numbers also confirm our findings. 
 
Table 13 suggests that we can use the incomplete matrices for approximation 
purposes. Executing the entire questioning procedure seems to be unnecessary: we 
are able to receive a fairly good estimation of the scores and/or rankings after 
having a certain number of pairwise comparisons completed. In addition we have 
also learnt that for objective tasks a significantly fewer pairwise comparisons are 
required to obtain a good estimation than for subjective tasks. This finding sets 
clear future research agenda, namely to determine the minimum required number 
of pairwise comparisons in order to obtain reliable estimations.  
 
Proposition 5: Incomplete PC matrices can be used to approximate the final 
results of all pairwise comparisons. 
 
Our database allowed us to analyze another characteristic of inconsistency. The 
intransitive triads (in the ordinal sense, i.e., A > B, B > C, yet, C > A, where > 
denotes ’is preferred to’ or ’is larger than’ etc., also analyzed by Gass (1998) and 
Kéri (2011)) provided information about structural problems with a PC matrix. 
The PC matrix cannot be consistent if there is at least one intransitive triad present 
among the comparisons. From the viewpoint of CM we can easily identify the 
inconsistent decision makers, as they have more than one inconsistent triad. Note, 
that from a CR viewpoint a CR value which is greater than 10% leads to similar 
conclusion: subjects featured by high CR are not accepted in a decision making 
process. 
 
Number of intransitive triads can be compared to at least two values. One is total 
number of triads, that is n(n – 1)(n – 2)/6. Another and more relevant benchmark 
is the maximal number of intransitive triads in a pairwise comparison matrix of 
the same size. Kendall and Smith (1940) proved that the maximal number of 
intransitive triads is (n3 – n)/24 if n is odd and (n3 – 4n)/24 if n is even, that is 2, 8 
and 20 as n = 4, 6, 8, respectively. At the moment we did not investigate the 
properties of a new index generated by one of these values. 
 
From our 454 complete PC matrices 38 had at least one intransitive triad. Out of 
these thirty-eight 34 was among the subjective type problems. One of these 38 
was among the 4×4 size matrices, 7 of the 38 were among the 6×6 size matrices, 
and 30 of the 38 were among the 8×8 size matrices. These facts are in accordance 
with Proposition 1 and with Proposition 2. Out of the same thirty-eight 
intransitive triads 13 were from the sequential questioning order, 11 matrices were 
from the random order and 14 were from Ross order. This is in line with 
Proposition 3. 
 
Furthermore, we assigned CR values to each of these thirty-eight matrices. Table 
14 shows that most of the matrices with high numbers of intransitive triads (from 
3 to 7) have CR values above the 10% threshold – as we expected. On the other 
hand, ten of the PC matrices with CR values below the 10% threshold have 1 or 2 
intransitive triads. It could be in the interest of our further research to analyze the 
properties of these matrices.  

      



Table 14 CR values and the number of intransitive triads 
 

number of intransitive triads 
CR in % 

1 2 3 4 5 6 7 
total 

0 - 5 3 1      4 
5 - 10 4 1   1   6 

10 - 20 9 2  2    13 

20 - 40 4 1 2 1  3  11 

40 -  2    1 1 4 

total 20 7 2 3 1 4 1 38 

 
As we mentioned in the introduction highly inconsistent matrices can be 
corrected. Intransitive triads indicate that the source of inconsistency is the 
presence of one or more outliers. Bozóki, Fülöp and Poesz (2011) proposed a 
procedure to make these matrices consistent by changing their element(s) and they 
also determined the number of elements that are necessary to be modified to 
eliminate inconsistency. In our current database there are 47 of those matrices in 
which inconsistency can be eliminated by modifying maximum 2 elements (5 of 
them was consistent without any changes). However, “eliminating the 
inconsistency” may potentially lead to controversial results, e.g. it is possible that 
the priorities at the end of this process would distract the DM from the real 
priorities. One has to be cautious in applying correction methods without 
confirming its results with the DM. An “automatic” execution of elimination can 
change the real goal of the decision maker and/or change his real preferences. 
Thus, correction methods can only be cautiously applied and only with the 
approval of the decision maker. 
 

4 Conclusions 

 
We built a database of empirical PC matrices to test simultaneously the impact of 
the nature (i.e., subjective versus objective tasks) of the MADM problem, the size 
of the PC matrix, and the questioning order. Another goal of our study was to 
extend the investigation for incomplete PC matrices. However, we make no claim 
that our sample was representative and the experiment was incentive compatible. 
Instead, we propose that this experimental design could potentially be used in 
systematic investigations on how human cognitive capacity interferes with 
consistent preference ranking. 
  
We found evidence that the nature of the task and the size of the matrices do 
affect the decision maker’s consistency (measured by inconsistency indices). In 
fact, increasing matrix size for subjective task has more sever impact on 
consistency. That is increasing the matrix size in a subjective task will lead to 
greater inconsistency than for objective task. However, we also found that the 
questioning order does not have an impact on consistency of either tasks.  
 
Based on our findings we suggest that decision-support systems with built-in 
pairwise comparison questioning modules and built-in inconsistency calculations 
could be developed in several directions. One of the possible improvements is fine 
tuning these systems in respect of their contents. Since consistency checks are 



crucial we recommend a parallel use of various approaches exploring the 
existence and the source of inconsistency in order to apply a proper correction 
method, if necessary. Thus correction methods may be reconsidered and may be 
incorporated into the model. Moreover, we are assuming that consistency could 
also benefit from increasing the interactivity of the decision-aiding software 
packages (Temesi, 2006). 
 
Furthermore, we also presented preliminary results on incomplete matrices 
obtained by a step-by-step procedure. We used new techniques to compute the 
elements of the incomplete matrices to reveal the decision maker’s behavior in the 
progress of completing the matrices. Our results are promising as they hint 
applicability of incomplete matrices for approximating the complete PC matrices, 
along with finding thresholds in reducing the number of questions in large-size 
pairwise comparison problems. 
 
One of our future research directions can be to design and conduct systematic 
studies to investigate how certain characteristics of matrices (i.e., size, content, 
importance for the decision maker, relevance to important/unimportant aspects of 
the decision makers’ state) impact behavioral consistency. These characteristics 
need to go under systematic research since our findings could potentially improve 
the real-world applications of decision-support systems.  
 
Furthermore, we conjecture that there are also important questions to be answered 
when designing decision support systems for solving MADM problems. One of 
the questions to investigate is the differences between paper-based or computer 
based procedures, or seek out the potential difference between numerical vs. 
graphical response scales, or study whether one should or should not provide 
inconsistency feedback during completion, or decide whether offering the 
corrections to the decision maker could make him behave more consistently.  
 
In addition, our long-term research goal is to explore the application of 
incomplete matrices. Most importantly, we are planning a systematic investigation 
on exploring what kind of decision support could make decision makers better off 
and make them behave more consistent. Based on our results and on other studies 
we believe that a more in-depth and systematic investigation on inconsistency 
indices could contribute to achieve that goal.  
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